Что образуется в ходе фотосинтеза. Определение и общая характеристика фотосинтеза, значение фотосинтеза

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

На настоящий момент у живых организмов обнаружено два типа пигментов, способных выполнять функцию фотосинтетических антенн. Данные пигменты поглощают кванты видимого света и обеспечивают дальнейшее запасание энергии излучения в виде энергии электрохимического градиента H + на биологических мембранах. Менее распространен случай, при котором в качестве антенны служит производное витамина А, ретиналь; у подавляющего большинства организмов роль антенн играют хлорофиллы. В соответствии с этим выделяют бесхлорофилльный и хлорофилльный фотосинтез.

Бесхлорофилльный фотосинтез

Система бесхлорофилльного фотосинтеза отличается значительной простотой организации, в связи с чем предполагается эволюционно первичным механизмом запасания энергии электромагнитного излучения. Эффективность бесхлорофилльного фотосинтеза как механизма преобразования энергии сравнительно низка (на один поглощённый квант переносится лишь один H +).

Открытие у галофильных архей

Dieter Oesterhelt и Walther Stoeckenius идентифицировали в «пурпурных мембранах» представителя галофильных архей Halobacterium salinarium (прежнее название Н. halobium ) белок, который позже был назван бактериородопсином . В скором времени были накоплены факты, указывающие на то, что бактериородопсин является светозависимым генератором протонного градиента . В частности, было продемонстрировано фотофосфорилирование на искусственных везикулах, содержащих бактериородопсин и митохондриальную АТФ-синтазу, фотофосфорилирование в интактных клетках H. salinarium , светоиндуцируемое падение pH среды и подавление дыхания, причем все эти эффекты коррелировали со спектром поглощения бактериородопсина. Таким образом, были получены неопровержимые доказательства существования бесхлорофилльного фотосинтеза.

Механизм

Фотосинтетический аппарат экстремальных галобактерий является наиболее примитивным из ныне известных; в нём отсутствует электрон-транспортная цепь. Цитоплазматическая мембрана галобактерий является сопрягающей мембраной, содержащей два основных компонента: светозависимую протонную помпу (бактериородопсин) и АТФ-синтазу . Работа такого фотосинтетического аппарата основана на следующих трансформациях энергии:

  1. Хромофор бактериородопсина ретиналь поглощает кванты света, что приводит к конформационным изменениям в структуре бактериородопсина и транспорту протона из цитоплазмы в периплазматическое пространство. Кроме того, дополнительный вклад в электрическую составляющую градиента вносит активный светозависимый импорт хлорид аниона, который обеспечивает галородопсин [ ] . Таким образом, в результате работы бактериородопсина энергия солнечного излучения трансформируется в энергию электрохимического градиента протонов на мембране.
  2. При работе АТФ-синтазы энергия трансмембранного градиента трансформируется в энергию химических связей АТФ. Таким образом, осуществляется хемиосмотическое сопряжение.

При бесхлорофилльном типе фотосинтеза (как и при реализации циклических потоков в электрон-транспортных цепях) не происходит образования восстановительных эквивалентов (восстановленного ферредоксина или НАД(Ф)Н), необходимых для ассимиляции углекислого газа. Поэтому при бесхлорофилльном фотосинтезе не происходит ассимиляции углекислого газа, а осуществляется исключительно запасание солнечной энергии в форме АТФ (фотофосфорилирование).

Значение

Основной путь получения энергии для галобактерий - аэробное окисление органических соединений (при культивировании используют углеводы и аминокислоты). При дефиците кислорода помимо бесхлорофилльного фотосинтеза источниками энергии для галобактерий может служить анаэробное нитратное дыхание или сбраживание аргинина и цитруллина . Однако в эксперименте было показано, что бесхлорофилльный фотосинтез может служить и единственным источником энергии в анаэробных условиях при подавлении анаэробного дыхания и брожения при обязательном условии, что в среду вносят ретиналь, для синтеза которого необходим кислород.

Хлорофилльный фотосинтез

Хлорофилльный фотосинтез отличается от бактериородопсинового значительно большей эффективностью запасания энергии. На каждый поглощённый квант излучения против градиента переносится не менее одного H + и в некоторых случаях энергия запасается в форме восстановленных соединений (ферредоксин, НАДФ).

Аноксигенный

Аноксигенный (или бескислородный) фотосинтез протекает без выделения кислорода. К аноксигенному фотосинтезу способны пурпурные и зелёные бактерии , а также гелиобактерии .

При аноксигенном фотосинтезе возможно осуществление:

  1. Светозависимого циклического транспорта электронов, не сопровождающегося образованием восстановительных эквивалентов и приводящего исключительно к запасанию энергии света в форме АТФ . При циклическом светозависимом электронном транспорте необходимости в экзогенных донорах электронов не возникает. Потребность в восстановительных эквивалентах обеспечивается нефотохимическим путём, как правило, за счёт экзогенных органических соединений.
  2. Светозависимого нециклического транспорта электронов, сопровождающегося и образованием восстановительных эквивалентов, и синтезом АДФ. При этом возникает потребность в экзогенных донорах электронов , которые необходимы для заполнения электронной вакансии в реакционном центре. В качестве экзогенных доноров электронов могут использоваться как органические, так и неорганические восстановители. Среди неорганических соединений наиболее часто используются различные восстановленные формы серы (сероводород , молекулярная сера , сульфиты , тиосульфаты , тетратионаты , тиогликоляты), также возможно использование молекулярного водорода .

Оксигенный

Оксигенный (или кислородный) фотосинтез сопровождается выделением кислорода в качестве побочного продукта. При оксигенном фотосинтезе осуществляется нециклический электронный транспорт, хотя при определенных физиологических условиях осуществляется исключительно циклический электронный транспорт. В качестве донора электронов при нециклическом потоке используется крайне слабый донор электронов - вода .

Оксигенный фотосинтез распространён гораздо шире. Характерен для высших растений , водорослей , многих протистов и цианобактерий .

Этапы

Фотосинтез - процесс с крайне сложной пространственно-временной организацией.

Разброс характерных времен различных этапов фотосинтеза составляет 19 порядков: скорость процессов поглощения квантов света и миграции энергии измеряется в фемтосекундном интервале (10 −15 с), скорость электронного транспорта имеет характерные времена 10 −10 −10 −2 с, а процессы, связанные с ростом растений, измеряются днями (10 5 −10 7 с).

Также большой разброс размеров характерен для структур, обеспечивающих протекание фотосинтеза: от молекулярного уровня (10 −27 м 3) до уровня фитоценозов (10 5 м 3).

В фотосинтезе можно выделить отдельные этапы, различающиеся по природе и характерным скоростям процессов:

  • Фотофизический;
  • Фотохимический;
  • Химический:
    • Реакции транспорта электронов;
    • «Темновые» реакции или циклы углерода при фотосинтезе.

На первом этапе происходит поглощение квантов света пигментами , их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы. На втором этапе происходит разделение зарядов в реакционном центре, перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН . Первые два этапа вместе называют светозависимой стадией фотосинтеза . Третий этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюконеогенез , образование сахаров и крахмала из углекислого газа воздуха.

Пространственная локализация

Лист

Фотосинтез растений осуществляется в хлоропластах : полуавтономных двухмембранных органеллах , относящихся к классу пластид . Хлоропласты могут содержаться в клетках стеблей , плодов , чашелистиков , однако основным органом фотосинтеза является лист. Лист сформировался в ходе эволюции и анатомически приспособлен к поглощению энергии света и ассимиляции углекислоты . Плоская форма листа обеспечивающая большое отношение поверхности к объёму, позволяет более полно использовать энергию солнечного света. Вода, необходимая для поддержания тургора и протекания фотосинтеза, доставляется к листьям из корневой системы по ксилеме развитой сети проводящих пучков (жилок листа) и стебля . Потеря воды в результате испарения через устьицы и в меньшей степени через кутикулу (транспирация) служит движущей силой транспорта по сосудам. Однако избыточная транспирация является нежелательной и у растений в ходе эволюции сформировались различные приспособления, направленные на снижение потерь воды. Отток ассимилятов, необходимый для функционирования цикла Кальвина , осуществляется по флоэме проводящих пучков (жилок) и флоэме стебля. При интенсивном фотосинтезе углеводы могут полимеризоваться и при этом в хлоропластах формируются крахмальные зёрна. Газообмен (поступление углекислого газа и выделение кислорода) осуществляется путём диффузии через устьица, некоторая часть газов движется через кутикулу.

Поскольку дефицит углекислого газа значительно увеличивает потери ассимилятов при фотодыхании , необходимо поддерживать высокую концентрацию углекислоты в межклеточном пространстве, что возможно при открытых устьицах . Однако, поддержание устьиц в открытом состоянии при высокой температуре приводит к увеличению транспирационных потерь воды - потерь воды испарением, что приводит к водному дефициту и также снижает продуктивность фотосинтеза. Данный конфликт решается в соответствии с принципом адаптивного компромисса . Кроме того, первичное поглощения углекислого газа ночью, при низкой температуре, у растений с CAM-фотосинтезом позволяет избежать высоких транспирационных потерь воды.

Фотосинтез на тканевом уровне

На тканевом уровне, фотосинтез у высших растений обеспечивается специализированной тканью - хлоренхи мой . Хлоренхима располагается близ поверхности тела растения, где получает достаточное количество световой энергии. Обычно хлоренхима располагается непосредственно под эпидермой. У растений, растущих в условиях повышенной инсоляции, между эпидермой и хлоренхимой может располагаться один или два слоя прозрачных клеток (гиподерма), обеспечивающих рассеивание света. У некоторых тенелюбивых растений хлоропластами богата и эпидерма (например кислица). Часто хлоренхима мезофила листа дифференцирована на палисадную (столбчатую) и губчатую, но может состоять и из однородных клеток. При условии дифференцировки, наиболее богата хлоропластами палисадная хлоренхима.

Хлоропласты

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые, соединяясь друг с другом, образуют тилакоиды , которые, в свою очередь, группируются в стопки, называемые гранами . Внутритилакоидное пространство отделено и не сообщается с остальной стромой, предполагается также, что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO 2 происходит в строме.

В хлоропластах имеются свои ДНК , РНК , рибосомы (70s типа), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза .

Фотосинтетические мембраны прокариот

Фотохимическая суть процесса

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П 700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин , который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П 700 .

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b 6 f комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая фаза

В темновой стадии с участием АТФ и НАДФ происходит восстановление CO 2 до глюкозы (C 6 H 12 O 6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С 3 -фотосинтез, цикл Кальвина

Во второй стадии ФГК в два этапа восстанавливается. Сначала она фосфорилируется АТФ под действием фосфороглицерокиназы с образованием 1,3-дифосфоглицериновой кислоты (ДФГК), затем при воздействии триозофосфатдегидрогеназы и НАДФН ацил-фосфатная группа ДФГК дефосфорилируется и восстанавливается до альдегидной и образуется глицеральдегид-3-фосфат - фосфорилированный углевод (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы . Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН и 18 АТФ.

С 4 -фотосинтез

Отличие этого механизма фотосинтеза от обычного заключается в том, что фиксация углекислого газа и его использование разделены в пространстве, между различными клетками растения .

При низкой концентрации растворённого в строме CO 2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания .

Для увеличения концентрации CO 2 растения С 4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата , возвращаемого в клетки мезофилла.

С 4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO 2 в лист, а также при рудеральной жизненной стратегии.

Фотосинтез по С4 пути проводят около 7600 видов растений, все относятся к цветковым : многие Злаковые (61 % видов, в том числе культурные - кукуруза, сахарный тростник и сорго и др. ), Гвоздичноцветные (наибольшая доля в семействах Маревые - 40 % видов, Амарантовые - 25 %), некоторые Осоковые , Астровые , Капустные , Молочайные .

САМ фотосинтез

Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь , нефть , природный газ , торф), также является запасённой в процессе фотосинтеза.

Фотосинтез служит главным входом неорганического углерода в биогеохимический цикл.

Фотосинтез является основой продуктивности сельско-хозяйственно важных растений.

Большая часть свободного кислорода атмосферы - биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя , позволило жизни существовать на суше.

История изучения

Первые опыты по изучению фотосинтеза были проведены Джозефом Пристли в -1780-х годах, когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал поддерживать горение, а помещённые в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод, что растения выделяют кислород, который необходим для дыхания и горения, однако не заметил, что для этого растениям нужен свет. Это показал вскоре Ян Ингенхауз .

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В г. Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В г. В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в г. П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии . Спектры поглощения хлорофилла были изучены К. А. Тимирязевым , он же, развивая положения Майера, показал, что именно поглощённые лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO 2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль , он же в 1931 году доказал, что пурпурные бактерии и зелёные серобактерии осуществляют аноксигенный фотосинтез . Окислительно-восстановительный характер фотосинтеза означал, что кислород в оксигенном фотосинтезе образуется полностью из воды, что экспериментально подтвердил в г. А. П. Виноградов в опытах с изотопной меткой. В г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO 2 можно разобщить. В - гг.

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Фотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты - полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.

Хлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.

Фотосинтез протекает при участии пигментов , которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент - каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы - световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Первая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой - отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ + в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Обязательный компонент для этой стадии - углекислый газ , который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:

  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар - глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Суть фотосинтеза

Из таблицы сравнений световой и темновой фаз природного синтеза можно вкратце описать суть каждой из них. Световая фаза происходит в гранах хлоропласта с обязательным включением в реакции световой энергии. В реакциях задействованы такие компоненты как белки, переносящие электроны, АТФ-синтетаза и хлорофилл, которые при взаимодействии с водой образуют свободный кислород, АТФ и НАДФ·Н2. Для темновой фазы, происходящей в строме хлоропласта, солнечный свет не является обязательным. Получившиеся на прошлом этапе АТФ и НАДФ·Н2 при взаимодействии с углекислотой формируют природный сахар (глюкозу).

Как видно из вышеизложенного, фотосинтез предстает довольно сложным и многоступенчатым явлением, включающим множество реакций, в которых задействуются разные вещества. В итоге природного синтеза получается кислород, необходимый для дыхания живых организмов и защиты их от ультрафиолетовой радиации с помощью образования озонового слоя.

Процесс преобразования лучистой энергии Солнца в химическую с использованием последней в синтезе углеводов из углекислого газа. Это единственный путь улавливания солнечной энергии и использования ее для жизни на нашей планете.

Улавливание и преобразование солнечной энергии осуществляют многообразные фотосинтезирующие организмы (фотоавтотрофы). К ним относятся многоклеточные организмы (высшие зеленые растения и низшие их формы - зеленые, бурые и красные водоросли) и одноклеточные (эвгленовые, динофлагелляты и диатомовые водоросли). Большую группу фотосинтезирующих организмов составляют прокариоты - сине-зеленые водоросли, зеленые и пурпурные бактерии. Примерно половина работы по фотосинтезу на Земле осуществляется высшими зелеными растениями, а остальная половина - главным образом одноклеточными водорослями.

Первые представления о фотосинтезе были сформированы в 17 веке. В дальнейшем, по мере появления новых данных, эти представления многократно изменялись [показать] .

Развитие представлений о фотосинтезе

Начало изучению фотосинтеза было положено в 1630 году, когда ван Гельмонт показал, что растения сами образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей, в котором росла ива, и само дерево, он показал, что в течение 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Ван Гельмонт пришел к заключению, что остальную часть пищи растение получило из воды, которой поливали дерево. Теперь мы знаем, что основным материалом для синтеза служит двуокись углерода, извлекаемая растением из воздуха.

В 1772 году Джозеф Пристли показал, что побег мяты "исправляет" воздух, "испорченный" горящей свечой. Семь лет спустя Ян Ингенхуз обнаружил, что растения могут "исправлять" плохой воздух только находясь на свету, причем способность растений "исправлять" воздух пропорциональна ясности дня и длительности пребывания растений на солнце. В темноте же растения выделяют воздух, "вредный для животных".

Следующей важной ступенью в развитии знаний о фотосинтезе были опыты Соссюра, проведенные в 1804 году. Взвешивая воздух и растения до фотосинтеза и после, Соссюр установил, что увеличение сухой массы растения превышало массу поглощенной им из воздуха углекислоты. Соссюр пришел к выводу, что другим веществом, участвовавшим в увеличении массы, была вода. Таким образом, 160 лет назад процесс фотосинтеза представляли себе следующим образом:

H 2 O + CO 2 + hv -> C 6 H 12 O 6 + O 2

Вода + Углекислота + Солнечная энергия ----> Органическое вещество + Кислород

Ингенхуз предположил, что роль света в фотосинтезе заключается в расщеплении углекислоты; при этом происходит выделение кислорода, а освободившийся "углерод" используется для построения растительных тканей. На этом основании живые организмы были разделены на зеленые растения, которые могут использовать солнечную энергию для "ассимиляции" углекислоты, и остальные организмы, не содержащие хлорофилла, которые не могут использовать энергию света и не способны ассимилировать CO 2 .

Этот принцип разделения живого мира был нарушен, когда С. Н. Виноградский в 1887 году открыл хемосинтезирующие бактерии - бесхлорофильные организмы, способные ассимилировать (т. е. превращать в органические соединения) углекислоту в темноте. Он был нарушен также, когда в 1883 году Энгельман открыл пурпурные бактерии, осуществляющие своеобразный фотосинтез, не сопровождающийся выделением кислорода. В свое время этот факт не был оценен в должной мере; между тем открытие хемосинтезирующих бактерий, ассимилирующих углекислоту в темноте, показывает, что ассимиляцию углекислоты нельзя считать специфической особенностью одного лишь фотосинтеза.

После 1940 года благодаря применению меченого углерода было установлено, что все клетки - растительные, бактериальные и животные - способны ассимилировать углекислоту, т. е. включать ее в состав молекул органических веществ; различны лишь источники, из которых они черпают необходимую для этого энергию.

Другой крупный вклад в изучение процесса фотосинтеза внес в 1905 году Блэкман, который обнаружил, что фотосинтез состоит из двух последовательных реакций: быстрой световой реакции и ряда более медленных, не зависящих от света этапов, названных им темповой реакцией. Используя свет высокой интенсивности, Блэкман показал, что фотосинтез протекает с одинаковой скоростью как при прерывистом освещении с продолжительностью вспышек всего в долю секунды, так и при непрерывном освещении, несмотря на то что в первом случае фотосинтетическая система получает вдвое меньше энергии. Интенсивность фотосинтеза снижалась только при значительном увеличении темнового периода. В дальнейших исследованиях было установлено, что скорость темновой реакции значительно возрастает с повышением температуры.

Следующая гипотеза относительно химической основы фотосинтеза была выдвинута ван Нилем, который в 1931 году экспериментально показал, что у бактерий фотосинтез может происходить в анаэробных условиях, не сопровождаясь выделением кислорода. Ван Ниль высказал предположение, что в принципе процесс фотосинтеза сходен у бактерий и у зеленых растений. У последних световая энергия используется для фотолиза воды (Н 2 0) с образованием восстановителя (Н), определенным путем участвующего в ассимиляции углекислоты, и окислителя (ОН) - гипотетического предшественника молекулярного кислорода. У бактерий фотосинтез протекает в общем так же, но донором водорода служит Н 2 S или молекулярный водород, и поэтому выделения кислорода не происходит.

Современные представления о фотосинтезе

По современным представлениям сущность фотосинтеза заключается в превращении лучистой энергии солнечного света в химическую энергию в форме АТФ и восстановленного никотинамидадениндинуклеотидфосфата (НАДФ · Н).

В настоящее время принято считать, что процесс фотосинтеза складывается из двух стадий, в которых активное участие принимают фотосинтезирующие структуры [показать] и светочувствительные пигменты клетки .

Фотосинтезирующие структуры

У бактерий фотосинтезирующие структуры представлены в виде впячивания клеточной мембраны, образуя пластинчатые органоиды мезосомы. Изолированные мезосомы, получаемые при разрушении бактерий, называются хроматофорами, в них сосредоточен светочувствительный аппарат.

У эукариотов фотосинтетический аппарат расположен в специальных внутриклеточных органоидах - хлоропластах, содержащих зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Хлоропласты, подобно митохондриям, содержат также ДНК, РНК и аппарат для синтеза белка, т. е. обладают потенциальной способностью к самовоспроизведению. По размерам хлоропласты в несколько раз больше митохондрий. Число хлоропластов колеблется от одного у водорослей до 40 на клетку у высших растений.


В клетках зеленых растений помимо хлоропластов имеются и митохондрии, которые используются для образования энергии в ночное время за счет дыхания, как в гетеротрофных клетках.

Хлоропласты имеют шаровидную или уплощенную форму. Они окружены двумя мембранами - наружной и внутренней (рис. 1). Внутренняя мембрана укладывается в виде стопок уплощенных пузырьковидных дисков. Эта стопка называется граной.

Каждая грана состоит из отдельных слоев, расположенных наподобие столбиков монет. Слои белковых молекул чередуются со слоями, содержащими хлорофилл, каротины и другие пигменты, а также особые формы липидов (содержащих галактозу или серу, но только одну жирную кислоту). Эти поверхностно-активные липиды, по-видимому, адсорбированы между отдельными слоями молекул и служат для стабилизации структуры, состоящей из чередующихся слоев белка и пигментов. Такое слоистое (ламеллярное) строение граны, вероятнее всего облегчает перенос энергии в процессе фотосинтеза от одной молекулы к близлежащей.

В водорослях находится не более одной граны в каждом хлоропласте, а в высших растениях - до 50 гран, которые соединены между собой мембранными перемычками. Водная среда между гранами - это строма хлоропласта, которая содержит ферменты, осуществляющие "темновые реакции"

Пузырьковидные структуры, из которых состоит грана, называются тилактоидами. В гране от 10 до 20 тилактоидов.

Элементарная структурная и функциональная единица фотосинтеза мембран тилактоидов, содержащая необходимые светоулавливающие пигменты и и компоненты аппарата трансформации энергии, называется квантосомой, состоящей примерно из 230 молекул хлорофилла. Эта частица имеет массу порядка 2 х 10 6 дальтон и размеры около 17,5 нм.

Стадии фотосинтеза

Световая стадия (или энергетическая)

Темновая стадия (или метаболическая)

Место протекание реакции

В квантосомах мембран тилактоидов, протекает на свету.

Осуществляется вне тилактоидов, в водной среде стромы.

Начальные продукты

Энергия света, вода (Н 2 О), АДФ, хлорофилл

СО 2 , рибулозодифосфат, АТФ, НАДФН 2

Суть процесса

Фотолиз воды, фосфорилирование

В световой стадии фотосинтеза энергия света трансформируется в химическую энергию АТФ, а бедные энергией электроны воды переходят в богатые энергией электроны НАДФ· Н 2 . Побочным веществом, образующимся в ходе световой стадии, является кислород. Реакции световой стадии получили название "световых реакций".

Карбоксилирование, гидрирование, дефосфорилирование

В темновой стадии фотосинтеза протекают "темновые реакции" при которых наблюдается восстановительный синтез глюкозы из CO 2 . Без энергии световой стадии темновая стадия невозможна.

Конечные продукты

О 2 , АТФ, НАДФН 2

Богатые энергией продукты световой реакции - АТФ и НАДФ· Н 2 далее используются в темновой стадии фотосинтеза.

Взаимосвязь между световой и темновой стадиями можно выразить схемой

Процесс фотосинтеза эндергонический, т.е. сопровождается увеличением свободной энергии, поэтому требует значительного количества энергии, подведенной извне. Суммарное уравнение фотосинтеза:

6СО 2 + 12Н 2 О--->С 6 Н 12 О 62 + 6Н 2 О + 6О 2 + 2861 кДж/моль.

Наземные растения поглощают необходимую для процесса фотосинтеза воду через корни, а водные растения получают ее путем диффузии из окружающей среды. Необходимая для фотосинтеза углекислота диффундирует в растение через мелкие отверстия на поверхности листьев - устьица. Поскольку углекислота расходуется в процессе фотосинтеза, ее концентрация в клетке обычно несколько ниже, чем в атмосфере. Освобождающийся в процессе фотосинтеза кислород диффундирует наружу из клетки, а затем и из растения - через устьица. Образующиеся при фотосинтезе сахара также диффундируют в те части растения, где их концентрация ниже.

Для осуществления фотосинтеза растениям необходимо очень много воздуха, так как он содержит всего 0,03% углекислоты. Следовательно, из 10 000 м 3 воздуха можно получить 3 м 3 углекислоты, из которой в процессе фотосинтеза образуется около 110 г глюкозы. Обычно растения лучше растут при более высоком содержании в воздухе углекислоты. Поэтому в некоторых теплицах содержание CO 2 в воздухе доводят до 1-5%.

Механизм световой (фотохимической) стадии фотосинтеза

В реализации фотохимической функции фотосинтеза принимают участие солнечная энергия и различные пигменты: зеленые - хлорофиллы а и b, желтые - каротиноиды и красные или синие - фикобилины. Фотохимически активен среди этого комплекса пигментов только хлорофилл а. Остальные пигменты играют вспомогательную роль, являясь лишь собирателями световых квантов (своеобразные светособирающие линзы) и проводниками их к фотохимическому центру.

На основании способности хлорофилла эффективно поглощать солнечную энергию определенной длины волны в мембранах тилактоидов были выделены функциональные фотохимические центры или фотосистемы (рис. 3):

  • фотосистемa I (хлорофилл а ) - содержит пигмент 700 (Р 700) поглощающий свет с длиной волны около 700 нм, играет основную роль в образовании продуктов световой стадии фотосинтеза: АТФ и НАДФ · Н 2
  • фотосистема II (хлорофилл b ) - содержит пигмент 680 (Р 680), поглощающий свет с длиной волны 680 нм, играет вспомогательную роль восполняя за счет фотолиза воды утраченные фотосистемой I электроны

На 300-400 молекул светособирающих пигментов в фотосистемах I и II приходится только одна молекула фотохимически активного пигмента - хлорофилла а.

Поглощенный растением световой квант

  • переводит пигмент Р 700 из основного состояния в возбужденное - Р * 700 , в котором он легко теряет электрон с образованием положительной электронной дырки в виде Р 700 + по схеме:

    Р 700 ---> Р * 700 ---> Р + 700 + е -

    После чего молекула пигмента, потерявшая электрон, может служить акцептором электрона (способна принять электрон) и переходить в восстановленную форму

  • вызывает разложение (фотоокисление) воды в фотохимическом центре Р 680 фотосистемы II по схеме

    Н 2 О ---> 2Н + + 2е - + 1/2O 2

    Фотолиз воды называется реакцией Хилла. Электроны, образующиеся при разложении воды, первоначально акцептируются веществом, обозначаемым Q (иногда его называют цитохромом С 550 пo максимуму поглощения, хотя оно не является цитохромом). Затем от вещества Q через цепь переносчиков, похожую по составу на митохондриальную, электроны поставляются в фотосистему I для заполнения электронной дырки, образовавшейся в результате поглощения системой световых квантов, и восстановления пигмента Р + 700

Если такая молекула просто получит назад тот же электрон, то произойдет выделение световой энергии в виде тепла и флуоресценции (этим обусловлена флуоресценция чистого хлорофилла). Однако, в большинстве случаев, освободившийся отрицательно заряженный электрон акцептируется специальными железосерными белками (FеS-центр), а затем

  1. или транспортируется по одной из цепей переносчиков обратно к Р + 700 , заполняя электронную дырку
  2. или по другой цепи переносчиков через ферредоксин и флавопротеид к постоянному акцептору - НАДФ · Н 2

В первом случае происходит замкнутый циклический транспорт электрона, а во втором - нециклический.

Оба процесса катализируются одной и той же цепью переносчиков электронов. Однако при циклическом фотофосфорилировании электроны возвращаются от хлорофилла а снова к хлорофиллу а , тогда как при нециклическом фотофосфорилировании электроны переходят от хлорофилла b к хлорофиллу а .

Циклическое (фотосинтетическое) фосфорилирование Нециклическое фосфорилирование

В результате циклического фосфорилирования происходит образование молекул АТФ. Процесс связан с возвращением через ряд последовательных этапов возбужденных электронов на Р 700 . Возвращение возбужденных электронов на Р 700 приводит к высвобождению энергии (при переходе с высокого на низкий энергетический уровень), которая, при участии фосфорилирующей ферментной системы, аккумулируется в фосфатных связях АТФ, а не рассеивается в виде флуоресценции и тепла (рис.4.). Этот процесс называется фотосинтетическим фосфорилированием (в отличие от окислительного фосфорилирования, осуществляемого митохондриями);

Фотосинтетическое фосфорилирование - первичная реакция фотосинтеза - механизм образования химической энергии (синтеза АТФ из АДФ и неорганического фосфата) на мембране тилактоидов хлоропластов с использованием энергии солнечного света. Необходима для темновой реакции ассимиляции СО 2

В результате нециклического фосфорилирования происходит восстановление НАДФ + с образование НАДФ · Н. Процесс связан с передачей электрона ферредоксину, его восстановлением и дальнейшим переходом его к НАДФ + с последующим восстановление его до НАДФ · Н

В тилактоидах идут оба процесса, хотя второй более сложный. Он сопряжен (взаимосвязан) с работой фотосистемы II.

Таким образом, утраченные Р 700 электроны восполняются за счет электронов воды, разлагаемой под действием света в фотосистеме II.

а + в основное состояние, образуются, по-видимому, при возбуждении хлорофилла b . Эти высокоэнергетические электроны переходят к ферредоксину и затем через флавопротеин и цитохромы - к хлорофиллу а . На последнем этапе происходит фосфорилирование АДФ до АТФ (рис. 5).

Электроны, необходимые для возвращения хлорофилла в его основное состояние, поставляются, вероятно, ионами ОН - , образующимися при диссоциации воды. Некоторая часть молекул воды диссоциирует на ионы Н + и ОН - . В результате потери электронов ионы ОН - превращаются в радикалы (ОН), которые в дальнейшем дают молекулы воды и газообразного кислорода (рис. 6).

Этот аспект теории подтверждается результатами опытов с водой и CO 2 , меченными 18 0 [показать] .

Согласно этим результатам, весь газообразный кислород, выделяющийся при фотосинтезе, происходит из воды, а не из СО 2 . Реакции расщепления воды до сих пор еще подробно не изучены. Ясно, однако, что осуществление всех последовательных реакций нециклического фотофосфорилирования (рис. 5), в том числе возбуждение одной молекулы хлорофилла а и одной молекулы хлорофилла b , должно приводить к образованию одной молекулы НАДФ · Н, двух или более молекул АТФ из АДФ и Ф н и к выделению одного атома кислорода. Для этого необходимо по крайней мере четыре кванта света - по два для каждой молекулы хлорофилла.

Нециклический поток электронов от Н 2 О к НАДФ · Н 2 , происходящий при взаимодействии двух фотосистем и связывающих их электронно-транспортных цепей, наблюдается вопреки значениям редокс-потенциалов: Е° для 1/2O 2 /Н 2 О = +0,81 В, а Е° для НАДФ/НАДФ · Н = -0,32 В. Энергия света обращает поток электронов "вспять". Существенно то, что при переносе от фотосистемы II к фотосистеме I часть энергии электронов аккумулируется в виде протонного потенциала на мембране тилактоидов, а затем в энергию АТФ.

Механизм образования протонного потенциала в цепи переноса электронов и его использование на образование АТФ в хлоропластах сходен с таковым в митохондриях. Однако в механизме фотофосфорилирования имеются некоторые особенности. Тилактоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому направление переноса электронов и протонов через мембрану противоположно направлению его в митохондриальной мембране (рис.6). Электроны движутся к внешней стороне, а протоны концентрируются внутри тилактоидного матрикса. Матрикс заряжается положительно, а внешняя мембрана тилактоида - отрицательно, т. е. направление протонного градиента противоположно направлению его в митохондриях.

Другой особенностью является значительно большая доля рН в протонном потенциале по сравнению с митохондриями. Тилактоидный матрикс сильно закисляется, поэтому Δ рН может достигать 0,1-0,2 В, в то время как Δ Ψ составляет около 0,1 В. Общее значение Δ μ H+ > 0,25 В.

Н + -АТФ-синтетаза, обозначаемая в хлоропластах как комплекс "СF 1 +F 0 ", ориентирована тоже в противоположном направлении. Головка ее (F 1) смотрит наружу, в сторону стромы хлоропласта. Протоны выталкиваются через СF 0 +F 1 из матрикса наружу, и в активном центре F 1 образуется АТФ за счет энергии протонного потенциала.

В отличие от митохондриальной цепи в тилактоидной имеется, по-видимому, только два участка сопряжения, поэтому на синтез одной молекулы АТФ требуется вместо двух три протона, т. е. соотношение 3 Н + /1 моль АТФ.

Итак, на первой стадии фотосинтеза, во время световых реакций, в строме хлоропласта образуются АТФ и НАДФ · Н - продукты, необходимые для осуществления темновых реакций.

Механизм темновой стадии фотосинтеза

Темновые реакции фотосинтеза - это процесс включения углекислоты в органические вещества с образованием углеводов (фотосинтез глюкозы из СО 2). Реакции протекают в строме хлоропласта при участии продуктов световой стадии фотосинтеза - АТФ и НАДФ · Н2.

Ассимиляция диоксида углерода (фотохимическое карбоксилирование) представляет собой циклический процесс, который называется также пентозофосфатным фотосинтетическим циклом или циклом Кальвина (рис. 7). В нем можно выделить три основные фазы:

  • карбоксилирование (фиксация СО 2 рибулозодифосфатом)
  • восстановление (образование триозофосфатов при восстановлении 3-фосфоглицерата)
  • регенерация рибулозодифосфата

Рибулозо-5-фосфат (сахар, содержащий 5 атомов углерода, с фосфатным остатком у углерода в положении 5) подвергается фосфорилированию за счет АТФ, что приводит к образованию рибулозодифосфата. Это последнее вещество карбоксилируется путем присоединения СО 2 , по-видимому, до промежуточного шестиуглеродного продукта, который, однако, немедленно расщепляется с присоединением молекулы воды, образуя две молекулы фосфоглицериновой кислоты. Затем фосфоглицериновая кислота восстанавливается в ходе ферментативной реакции, для осуществления которой необходимо присутствие АТФ и НАДФ · Н с образованием фосфоглицеринового альдегида (трехуглеродный сахар - триоза). В результате конденсации двух таких триоз образуется молекула гексозы, которая может включаться в молекулу крахмала и таким образом откладываться про запас.

Для завершения этой фазы цикла в процессе фотосинтеза поглощается 1 молекула С0 2 и используются 3 молекулы АТФ и 4 атома Н (присоединенных к 2 молекулам НАД · Н). Из гексозофосфата путем определенных реакций пентозофосфатного цикла (рис. 8) регенерирует рибулозофосфат, который снова может присоединить к себе другую молекулу углекислоты.

Ни одну из описанных реакций - карбоксилирование, восстановление или регенерацию - нельзя считать специфичной только для фотосинтезирующей клетки. Единственное обнаруженное у них отличие заключается в том, что для реакции восстановления, в течение которой фосфоглицериновая кислота превращается в фосфоглицериновый альдегид, необходим НАДФ · Н, а не НАД · Н, как обычно.

Фиксация СО 2 рибулозодифосфатом катализируется ферментом рибулозодифосфаткарбоксилазой: Рибулозодифосфат + СО 2 --> 3-Фосфоглицерат Далее 3-фосфоглицерат восстанавливается с помощью НАДФ · Н 2 и АТФ до глицеральдегид-3-фосфата. Эта реакция катализируется ферментом - глицеральдегид-3-фосфат-дегидрогеназой. Глицеральдегид-3-фосфат легко изомеризуется в дигидроксиацетонфосфат. Оба триозофосфата используются в образовании фруктозобисфосфата (обратная реакция, катализируемая фруктозо-бисфосфат-альдолазой). Часть молекул образовавшегося фруктозобисфосфата участвует вместе с триозофосфатами в регенерации рибулозодифосфата (замыкают цикл), а другая часть используется для запасания углеводов в фотосинтезирующих клетках, как показано на схеме.

Подсчитано, что для синтеза одной молекулы глюкозы из СО 2 в цикле Кальвина требуется 12 НАДФ · Н + Н + и 18 АТФ (12 молекул АТФ расходуются на восстановление 3-фосфоглицерата, а 6 молекул - в реакциях регенерации рибулозодифосфата). Минимальное соотношение - 3 АТФ: 2 НАДФ · Н 2 .

Можно заметить общность принципов, лежащих в основе фотосинтетического и окислительного фосфорилирования, причем фотофосфорилирование представляет собой как бы обращенное окислительное фосфорилирование:

Энергия света является движущей силой фосфорилирования и синтеза органических веществ (S-Н 2) при фотосинтезе и, наоборот, энергия окисления органических веществ - при окислительном фосфорилировании. Поэтому именно растения обеспечивают жизнь животным и другим гетеротрофным организмам:

Углеводы, образующиеся при фотосинтезе, служат для построения углеродных скелетов многочисленных органических веществ растений. Азоторганические вещества усваиваются фотосинтезирующими организмами путем восстановления неорганических нитратов или атмосферного азота, а сера - восстановлением сульфатов до сульфгидрильных групп аминокислот. Фотосинтез в конечном итоге обеспечивает построение не только обязательных для жизни белков, нуклеиновых кислот, углеводов, липидов, кофакторов, но и многочисленных продуктов вторичного синтеза, являющихся ценными лекарственными веществами (алкалоиды, флавоноиды, полифенолы, терпены, стероиды, органические кислоты и т.д.).

Бесхлорофильный фотосинтез

Бесхлорофильный фотосинтез обнаружен у солелюбивых бактерий, имеющих фиолетовый светочувствительный пигмент. Этим пигментом оказался белок бактериородопсин, содержащий, подобно зрительному пурпуру сетчатки - родопсину, производное витамина А - ретиналь. Бактериородопсин, встроенный в мембрану солелюбивных бактерий, образует на этой мембране в ответ на поглощение ретиналем света протонный потенциал, преобразующийся в АТФ. Таким образом, бактериородопсин является бесхлорофильным преобразователем энергии света.

Фотосинтез и внешняя среда

Фотосинтез возможен только при наличии света, воды и диоксида углерода. КПД фотосинтеза не более 20% у культурных видов растений, а обычно он не превышает 6-7%. В атмосфере примерно 0,03% (об.) СО 2 , при повышении его содержания до 0,1% интенсивность фотосинтеза и продуктивность растений возрастают, поэтому целесообразно подкармливать растения гидрокарбонатами. Однако содержание СО 2 в воздухе выше 1,0% оказывает вредное действие на фотосинтез. За год только наземные растения усваивают 3% всего СО 2 атмосферы Земли, т. е. около 20 млрд. т. В составе синтезируемых из СО 2 углеводов аккумулируется до 4 · 10 18 кДж энергии света. Это соответствует мощности электростанции в 40 млрд кВт. Побочный продукт фотосинтеза - кислород - жизненно необходим для высших организмов и аэробных микроорганизмов. Сохранить растительный покров - значит сохранить жизнь на Земле.

Эффективность фотосинтеза

Эффективность фотосинтеза с точки зрения производства биомассы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продуктивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и выразить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической, эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы.

Растения используют свет с длиной волны от 400 до 700 нм, т. е. на долю фотосинтетически активной радиации приходится 50% всего солнечного света. Это соответствует интенсивности на поверхности Земли 800-1000 Вт/м 2 за обычный солнечный день (в среднем). Усредненная максимальная эффективность превращения энергии при фотосинтезе на практике составляет 5-6%. Эти оценки получены на основе изучения процесса связывания СО 2 , а также сопутствующих физиологических и физических потерь. Одному молю связанного СО 2 в форме углевода соответствует энергия 0,47 МДж, а энергия моля квантов красного света с длиной волны 680 нм (наиболее бедный энергией свет, используемый в фотосинтезе) составляет 0,176 МДж. Таким образом, минимальное число молей квантов красного света, необходимое для связывания 1 моля СО 2 , составляет 0,47:0,176 = 2,7. Однако, поскольку перенос четырех электронов от воды для фиксации одной молекулы СО 2 требует не менее восьми квантов света, теоретическая эффективность связывания равна 2,7:8 = 33%. Эти расчеты сделаны для красного света; ясно, что для белого света эта величина будет соответственно ниже.

В наилучших полевых условиях эффективность фиксации в растениях достигает 3%, однако это возможно лишь в короткие периоды роста и, если пересчитать ее на весь год, то она будет где-то между 1 и 3%.

На практике в среднем за год эффективность фотосинтетического преобразования энергии в зонах с умеренным климатом составляет обычно 0,5-1,3%, а для субтропических культур - 0,5-2,5%. Выход продукта, который можно ожидать при определенном уровне интенсивности солнечного света и разной эффективности фотосинтеза, легко оценить из графиков, приведенных на рис. 9.

Значение фотосинтеза

  • Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом, волокнами и бесчисленными полезными химическими соединениями.
  • Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая.
  • Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных, в виде топлива и строительных материалов


 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!