Электрическая дуга (вольтова дуга, дуговой разряд). Электрическая дуга

Материал из Википедии - свободной энциклопедии

Электри́ческая дуга́ (во́льтова дуга́ , дугово́й разря́д ) - физическое явление, один из видов электрического разряда в газе.

Строение дуги

Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области - около 0,0001 мм.

Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги - от 7 000 до 18 000°С, в области катода - 9000 - 12000°С.

Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине .

Сварочные дуги классифицируют по:

  • Материалам электрода - с плавящимся и неплавящимся электродом;
  • Степени сжатия столба - свободную и сжатую дугу;
  • По используемому току - дуга постоянного и дуга переменного тока;
  • По полярности постоянного электрического тока - прямой полярности ("-" на электроде, "+" - на изделии) и обратной полярности;
  • При использовании переменного тока - дуги однофазная и трехфазная.

Саморегулирование дуги

При возникновении внешнего возмещения - изменения напряжения сети, скорости подачи проволоки и др. возникает нарушение в установившемся равновесии между скоростью подачи и скоростью плавления. При увеличении длины дуги в цепи уменьшаются сварочный ток и скорость плавления электродной проволоки, а скорость подачи, оставаясь постоянной, становится больше скорости плавления, что приводит к восстановлению длины дуги. При уменьшении длины дуги скорость плавления проволоки становится больше скорости подачи, это приводит к восстановлению нормальной длины дуги .

На эффективность процесса саморегулирования дуги значительно влияет форма вольт-амперной характеристики источника питания. Большое быстродействие колебания длины дуги отрабатывается автоматически при жестких ВАХ цепи.

Борьба с электрической дугой

В ряде устройств явление электрической дуги является вредным. Это в первую очередь контактные коммутационные устройства, используемые в электроснабжении и электроприводе: высоковольтные выключатели , автоматические выключатели , контакторы , секционные изоляторы на контактной сети электрифицированных железных дорог и городского электротранспорта. При отключении нагрузок вышеуказанными аппаратами между размыкающимися контактами возникает дуга.

Механизм возникновения дуги в данном случае следующий:

  • Уменьшение контактного давления - количество контактных точек уменьшается, растёт сопротивление в контактном узле;
  • Начало расхождения контактов - образование «мостиков» из расплавленного металла контактов (в местах последних контактных точек);
  • Разрыв и испарение «мостиков» из расплавленного металла;
  • Образование электрической дуги в парах металла (что способствует большей ионизации контактного промежутка и трудности при гашении дуги);
  • Устойчивое горение дуги с быстрым выгоранием контактов.

Для минимального повреждения контактов необходимо погасить дугу в минимальное время, прилагая все усилия по недопущению нахождения дуги на одном месте (при движении дуги теплота, выделяющаяся в ней будет равномерно распределяться по телу контакта).

Для выполнения вышеуказанных требований применяются следующие методы борьбы с дугой:

  • охлаждение дуги потоком охлаждающей среды - жидкости (масляный выключатель); газа - (воздушный выключатель , автогазовый выключатель , масляный выключатель , элегазовый выключатель), причём поток охлаждающей среды может проходить как вдоль ствола дуги (продольное гашение), так и поперёк (поперечное гашение); иногда применяется продольно-поперечное гашение;
  • использование дугогасящей способности вакуума - известно, что при уменьшении давления газов, окружающих коммутируемые контакты до определённого значения, приводит к эффективному гашению дуги (в связи с отсутствием носителей для образования дуги) вакуумный выключатель .
  • использование более дугостойкого материала контактов;
  • применение материала контактов с более высоким потенциалом ионизации;
  • применение дугогасительных решёток (автоматический выключатель , электромагнитный выключатель). Принцип применения дугогашения на решётках основан на применении эффекта околокатодного падения в дуге (большая часть падения напряжения в дуге - это падение напряжения на катоде; дугогасительная решётка - фактически ряд последовательных контактов для попавшей туда дуги).
  • использование дугогасительных камер - попадая в камеру из дугостойкого материала, например слюдопласта, с узкими, иногда зигзагообразными каналами, дуга растягивается, сжимается и интенсивно охлаждается от соприкосновения со стенками камеры.
  • использование «магнитного дутья» - поскольку дуга сильно ионизирована, то её в первом приближении можно полагать как гибкий проводник с током; создавая специальными электромагнитами (включённых последовательно с дугой) магнитное поле можно создавать движение дуги для равномерного распределения тепла по контакту, так и для загона её в дугогасительную камеру или решётку. В некоторых конструкциях выключателей создаётся радиальное магнитное поле, придающее дуге вращательный момент.
  • шунтирование контактов в момент размыкания силовым полупроводниковым ключом тиристором или симистором, включеным параллельно контактам, после размыкания контактов полупроводниковый ключ отключается в момент перехода напряжения через ноль (гибридный контактор, тирикон).

См. также

Напишите отзыв о статье "Электрическая дуга"

Литература

  • Дуга электрическая - статья из .
  • Искровой разряд - статья из Большой советской энциклопедии .
  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3 .
  • Родштейн Л. А. Электрические аппараты, Л 1981 г.
  • Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François (2015-06-01). "Laser-assisted guiding of electric discharges around objects". Science Advances 1 (5): e1400111. Bibcode:2015SciA....1E0111C. doi:10.1126/sciadv.1400111. ISSN 2375-2548.

Ссылки

Примечания

Отрывок, характеризующий Электрическая дуга

– On fera du chemin cette fois ci. Oh! quand il s"en mele lui meme ca chauffe… Nom de Dieu… Le voila!.. Vive l"Empereur! Les voila donc les Steppes de l"Asie! Vilain pays tout de meme. Au revoir, Beauche; je te reserve le plus beau palais de Moscou. Au revoir! Bonne chance… L"as tu vu, l"Empereur? Vive l"Empereur!.. preur! Si on me fait gouverneur aux Indes, Gerard, je te fais ministre du Cachemire, c"est arrete. Vive l"Empereur! Vive! vive! vive! Les gredins de Cosaques, comme ils filent. Vive l"Empereur! Le voila! Le vois tu? Je l"ai vu deux fois comme jete vois. Le petit caporal… Je l"ai vu donner la croix a l"un des vieux… Vive l"Empereur!.. [Теперь походим! О! как он сам возьмется, дело закипит. Ей богу… Вот он… Ура, император! Так вот они, азиатские степи… Однако скверная страна. До свиданья, Боше. Я тебе оставлю лучший дворец в Москве. До свиданья, желаю успеха. Видел императора? Ура! Ежели меня сделают губернатором в Индии, я тебя сделаю министром Кашмира… Ура! Император вот он! Видишь его? Я его два раза как тебя видел. Маленький капрал… Я видел, как он навесил крест одному из стариков… Ура, император!] – говорили голоса старых и молодых людей, самых разнообразных характеров и положений в обществе. На всех лицах этих людей было одно общее выражение радости о начале давно ожидаемого похода и восторга и преданности к человеку в сером сюртуке, стоявшему на горе.
13 го июня Наполеону подали небольшую чистокровную арабскую лошадь, и он сел и поехал галопом к одному из мостов через Неман, непрестанно оглушаемый восторженными криками, которые он, очевидно, переносил только потому, что нельзя было запретить им криками этими выражать свою любовь к нему; но крики эти, сопутствующие ему везде, тяготили его и отвлекали его от военной заботы, охватившей его с того времени, как он присоединился к войску. Он проехал по одному из качавшихся на лодках мостов на ту сторону, круто повернул влево и галопом поехал по направлению к Ковно, предшествуемый замиравшими от счастия, восторженными гвардейскими конными егерями, расчищая дорогу по войскам, скакавшим впереди его. Подъехав к широкой реке Вилии, он остановился подле польского уланского полка, стоявшего на берегу.
– Виват! – также восторженно кричали поляки, расстроивая фронт и давя друг друга, для того чтобы увидать его. Наполеон осмотрел реку, слез с лошади и сел на бревно, лежавшее на берегу. По бессловесному знаку ему подали трубу, он положил ее на спину подбежавшего счастливого пажа и стал смотреть на ту сторону. Потом он углубился в рассматриванье листа карты, разложенного между бревнами. Не поднимая головы, он сказал что то, и двое его адъютантов поскакали к польским уланам.
– Что? Что он сказал? – слышалось в рядах польских улан, когда один адъютант подскакал к ним.
Было приказано, отыскав брод, перейти на ту сторону. Польский уланский полковник, красивый старый человек, раскрасневшись и путаясь в словах от волнения, спросил у адъютанта, позволено ли ему будет переплыть с своими уланами реку, не отыскивая брода. Он с очевидным страхом за отказ, как мальчик, который просит позволения сесть на лошадь, просил, чтобы ему позволили переплыть реку в глазах императора. Адъютант сказал, что, вероятно, император не будет недоволен этим излишним усердием.
Как только адъютант сказал это, старый усатый офицер с счастливым лицом и блестящими глазами, подняв кверху саблю, прокричал: «Виват! – и, скомандовав уланам следовать за собой, дал шпоры лошади и подскакал к реке. Он злобно толкнул замявшуюся под собой лошадь и бухнулся в воду, направляясь вглубь к быстрине течения. Сотни уланов поскакали за ним. Было холодно и жутко на середине и на быстрине теченья. Уланы цеплялись друг за друга, сваливались с лошадей, лошади некоторые тонули, тонули и люди, остальные старались плыть кто на седле, кто держась за гриву. Они старались плыть вперед на ту сторону и, несмотря на то, что за полверсты была переправа, гордились тем, что они плывут и тонут в этой реке под взглядами человека, сидевшего на бревне и даже не смотревшего на то, что они делали. Когда вернувшийся адъютант, выбрав удобную минуту, позволил себе обратить внимание императора на преданность поляков к его особе, маленький человек в сером сюртуке встал и, подозвав к себе Бертье, стал ходить с ним взад и вперед по берегу, отдавая ему приказания и изредка недовольно взглядывая на тонувших улан, развлекавших его внимание.
Для него было не ново убеждение в том, что присутствие его на всех концах мира, от Африки до степей Московии, одинаково поражает и повергает людей в безумие самозабвения. Он велел подать себе лошадь и поехал в свою стоянку.
Человек сорок улан потонуло в реке, несмотря на высланные на помощь лодки. Большинство прибилось назад к этому берегу. Полковник и несколько человек переплыли реку и с трудом вылезли на тот берег. Но как только они вылезли в обшлепнувшемся на них, стекающем ручьями мокром платье, они закричали: «Виват!», восторженно глядя на то место, где стоял Наполеон, но где его уже не было, и в ту минуту считали себя счастливыми.
Ввечеру Наполеон между двумя распоряжениями – одно о том, чтобы как можно скорее доставить заготовленные фальшивые русские ассигнации для ввоза в Россию, и другое о том, чтобы расстрелять саксонца, в перехваченном письме которого найдены сведения о распоряжениях по французской армии, – сделал третье распоряжение – о причислении бросившегося без нужды в реку польского полковника к когорте чести (Legion d"honneur), которой Наполеон был главою.
Qnos vult perdere – dementat. [Кого хочет погубить – лишит разума (лат.) ]

Русский император между тем более месяца уже жил в Вильне, делая смотры и маневры. Ничто не было готово для войны, которой все ожидали и для приготовления к которой император приехал из Петербурга. Общего плана действий не было. Колебания о том, какой план из всех тех, которые предлагались, должен быть принят, только еще более усилились после месячного пребывания императора в главной квартире. В трех армиях был в каждой отдельный главнокомандующий, но общего начальника над всеми армиями не было, и император не принимал на себя этого звания.
Чем дольше жил император в Вильне, тем менее и менее готовились к войне, уставши ожидать ее. Все стремления людей, окружавших государя, казалось, были направлены только на то, чтобы заставлять государя, приятно проводя время, забыть о предстоящей войне.
После многих балов и праздников у польских магнатов, у придворных и у самого государя, в июне месяце одному из польских генерал адъютантов государя пришла мысль дать обед и бал государю от лица его генерал адъютантов. Мысль эта радостно была принята всеми. Государь изъявил согласие. Генерал адъютанты собрали по подписке деньги. Особа, которая наиболее могла быть приятна государю, была приглашена быть хозяйкой бала. Граф Бенигсен, помещик Виленской губернии, предложил свой загородный дом для этого праздника, и 13 июня был назначен обед, бал, катанье на лодках и фейерверк в Закрете, загородном доме графа Бенигсена.
В тот самый день, в который Наполеоном был отдан приказ о переходе через Неман и передовые войска его, оттеснив казаков, перешли через русскую границу, Александр проводил вечер на даче Бенигсена – на бале, даваемом генерал адъютантами.
Был веселый, блестящий праздник; знатоки дела говорили, что редко собиралось в одном месте столько красавиц. Графиня Безухова в числе других русских дам, приехавших за государем из Петербурга в Вильну, была на этом бале, затемняя своей тяжелой, так называемой русской красотой утонченных польских дам. Она была замечена, и государь удостоил ее танца.
Борис Друбецкой, en garcon (холостяком), как он говорил, оставив свою жену в Москве, был также на этом бале и, хотя не генерал адъютант, был участником на большую сумму в подписке для бала. Борис теперь был богатый человек, далеко ушедший в почестях, уже не искавший покровительства, а на ровной ноге стоявший с высшими из своих сверстников.
В двенадцать часов ночи еще танцевали. Элен, не имевшая достойного кавалера, сама предложила мазурку Борису. Они сидели в третьей паре. Борис, хладнокровно поглядывая на блестящие обнаженные плечи Элен, выступавшие из темного газового с золотом платья, рассказывал про старых знакомых и вместе с тем, незаметно для самого себя и для других, ни на секунду не переставал наблюдать государя, находившегося в той же зале. Государь не танцевал; он стоял в дверях и останавливал то тех, то других теми ласковыми словами, которые он один только умел говорить.
При начале мазурки Борис видел, что генерал адъютант Балашев, одно из ближайших лиц к государю, подошел к нему и непридворно остановился близко от государя, говорившего с польской дамой. Поговорив с дамой, государь взглянул вопросительно и, видно, поняв, что Балашев поступил так только потому, что на то были важные причины, слегка кивнул даме и обратился к Балашеву. Только что Балашев начал говорить, как удивление выразилось на лице государя. Он взял под руку Балашева и пошел с ним через залу, бессознательно для себя расчищая с обеих сторон сажени на три широкую дорогу сторонившихся перед ним. Борис заметил взволнованное лицо Аракчеева, в то время как государь пошел с Балашевым. Аракчеев, исподлобья глядя на государя и посапывая красным носом, выдвинулся из толпы, как бы ожидая, что государь обратится к нему. (Борис понял, что Аракчеев завидует Балашеву и недоволен тем, что какая то, очевидно, важная, новость не через него передана государю.)
Но государь с Балашевым прошли, не замечая Аракчеева, через выходную дверь в освещенный сад. Аракчеев, придерживая шпагу и злобно оглядываясь вокруг себя, прошел шагах в двадцати за ними.

2.1. ПРИРОДА СВАРОЧНОЙ ДУГИ

Электрическая дуга представляет собой один из видов электриче­ских разрядов в газах, при котором наблюдается прохождение электри­ческого тока через газовый промежуток под воздействием электрическо­го поля. Электрическую дугу, используемую для сварки металлов, назы­вают сварочной дугой. Дуга является частью электрической сварочной цепи, и на ней происходит падение напряжения. При сварке на постоян­ном токе электрод, подсоединенный к положительному полюсу источ­ника питания дуги, называют анодом, а к отрицательному — катодом. Если сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом.

Промежуток между электродами называют областью дугового разряда или дуговым промежутком. Длину дугового промежутка на­зывают длиной дуги. В обычных условиях при низких температурах га­зы состоят из нейтральных атомов и молекул и не обладают электриче­ской проводимостью. Прохождение электрического тока через газ воз­можно только при наличии в нем заряженных частиц — электронов и ионов. Процесс образования заряженных частиц газа называют иониза­цией, а сам газ — ионизованным. Возникновение заряженных частиц в дуговом промежутке обусловливается эмиссией (испусканием) элек­тронов с поверхности отрицательного электрода (катода) и ионизацией находящихся в промежутке газов и паров. Дуга, горящая между элек­тродом и объектом сварки, является дугой прямого действия. Такую дугу принято называть свободной дугой в отличие от сжатой, попереч­ное сечение которой принудительно уменьшено за счет сопла горелки, потока газа, электромагнитного поля. Возбуждение дуги происходит следующим образом. При коротком замыкании электрода и детали в местах касания их поверхности разогреваются. При размыкании элек­тродов с нагретой поверхности катода происходит испускание электро­нов — электронная эмиссия. Выход электронов в первую очередь связы­вают с термическим эффектом (термоэлектронная эмиссия) и наличием у катода электрического поля высокой напряженности (автоэлектронная эмиссия). Наличие электронной эмиссии с поверхности катода является непременным условием существования дугового разряда.

По длине дугового промежутка дуга разделяется на три области (рис. 2.1): катодную, анодную и находящийся между ними столб дуги.

Катодная область включает в себя нагретую поверхность катода, называемую катодным пятном, и часть дугового промежутка, примы­кающую к ней. Протяженность катодной области мала, но она характе­ризуется повышенной напряженностью и протекающими в ней процес­сами получения электронов, являющимися необходимым условием для существования дугового разряда. Температура катодного пятна для стальных электродов достигает 2400-2700 °С. На нем выделяется до 38 % общей теплоты дуги. Основным физическим процессом в этой об­ласти является электронная эмиссия и разгон электронов. Падение на­пряжения в катодной области ик составляет порядка 12-17 В.

Анодная область состоит из анодного пятна на поверхности анода и части дугового промежутка, примыкающего к нему. Ток в анодной области определяется потоком электронов, идущих из столба дуги. Анодное пятно является местом входа и нейтрализации свободных электронов в материале анода. Оно имеет примерно такую же темпера­туру, как и катодное пятно, но в результате бомбардировки электронами на нем выделяется больше теплоты, чем на катоде. Анодная область также характеризуется повышенной напряженностью. Падение напря­жения в ней Ua составляет порядка 2-11 В. Протяженность этой области также мала.

Столб дуги занимает наибольшую протяженность дугового проме­жутка, расположенную между катодной и анодной областями. Основ­ным процессом образования заряженных частиц здесь является иониза­ция газа. Этот процесс происходит в результате соударения заряженных (в первую очередь электронов) и нейтральных частиц газа. При доста­точной энергии соударения из частиц газа происходит выбивание элек­тронов и образование положительных ионов. Такую ионизацию назы­вают ионизацией соударением. Соударение может произойти и без ио­низации, тогда энергия соударения выделяется в виде теплоты и идет на повышение температуры дугового столба. Образующиеся в столбе дуги заряженные частицы движутся к электродам: электроны — к аноду, ионы — к катоду. Часть положительных ионов достигает катодного пятна, другая же часть не достигает и, присоединяя к себе отрицательно заря­женные электроны, ионы становятся нейтральными атомами.

Такой процесс нейтрализации частиц называют рекомбинацией. В столбе дуги при всех условиях горения ее наблюдается устойчивое равновесие между процессами ионизации и рекомбинации. В целом столб дуги не имеет заряда. Он нейтрален, так как в каждом сечении его одновременно находятся равные количества противоположно заряжен­ных частиц. Температура столба дуги достигает 6000-8000 °С и более. Падение напряжения в нем (Uc) изменяется практически линейно по длине, увеличиваясь с увеличением длины столба. Падение напряжения зависит от состава газовой среды и уменьшается с введением в нее лег­ко ионизующихся компонентов. Такими компонентами являются ще­лочные и щелочно-земельные элементы (Са, Na, К и др.). Общее паде­ние напряжения в дуге Uд=Uк+Ua+Uc. Принимая падение напряжения в столбе дуги в виде линейной зависимости, его можно представить формулой Uc=Elc, где Е — напряженность по длине, lc — длина столба. Значения ик, Ua, E практически зависят лишь от материала электродов и состава среды дугового промежутка и при их неизменности остаются постоянными при разных условиях сварки. В связи с малой протяжен­ностью катодной и анодной областей можно считать практически 1с=1д. Тогда получается выражение

II}{ = а + Ы}{, (2.1)

показывающее, что напряжение дуги прямым образом зависит от ее длины, где а=ик+иа; b=E. Непременным условием получения качест­венного сварного соединения является устойчивое горение дуги (ее ста­бильность). Под этим понимают такой режим ее существования, при ко­тором дуга длительное время горит при заданных значениях силы тока и напряжения, не прерываясь и не переходя в другие виды разрядов. При устойчивом горении сварочной дуги основные ее параметры — сила тока и напряжение — находятся в определенной взаимозависимости. По­этому одной из основных характеристик дугового разряда является за­висимость ее напряжения от силы тока при постоянной длине дуги. Графическое изображение этой зависимости при работе в статическом режиме (в состоянии устойчивого горения дуги) называют статической вольтамперной характеристикой дуги (рис. 2.2).

С увеличением длины дуги ее напряжение возрастает и кривая ста­тической вольтамперной характеристики поднимается, выше с уменьше­нием длины дуги опускается ниже, качественно сохраняя при этом свою форму. Кривую статической характеристики можно разделить на три области: падающую, жесткую и возрастающую. В первой области уве­личение тока приводит к резкому падению напряжения дуги. Это обу­словлено тем, что с увеличением силы тока увеличивается площадь сечения столба дуги и его электропроводность. Горение дуги на режимах в этой области отличается малой устойчивостью. Во второй области увеличение силы тока не связано с изменением напряжения дуги. Это объясняется тем, что пло­щадь сечения столба дуги и активных пятен изменяется пропорциональ­но силе тока, в связи с чем плотность тока и падение напряжения в дуге сохраняются постоянными. Сварка дугой с жесткой статической харак­теристикой находит широкое применение в сварочной технологии, осо­бенно при ручной сварке . В третьей области с увеличением силы тока напряжение возрастает. Это связано с тем, что диаметр катодного пятна становится равным диаметру электрода и увеличиваться далее не может, при этом в дуге возрастает плотность тока и падает напряжение. Дуга с возрастающей статической характеристикой широко используется при автоматической и механизированной сварке под флюсом и в защитных газах с применением тонкой сварочной проволоки.

Рис. 2.3. Статистическая вольтамперная характеристика дуги при разных скоростях подачи электродной проволоки: а — малая скорость; б — средняя скорость, в — большая скорость

При механизированной сварке плавящимся электродом иногда применяют статическую вольтамперную характеристику дуги, снятую не при постоянной ее длине, а при постоянной скорости подачи элек­тродной проволоки (рис. 2.3).

Как видно из рисунка, каждой скорости подачи электродной про­волоки соответствует узкий диапазон токов с устойчивым горением ду­ги. Слишком малый сварочный ток может привести к короткому замы­канию электрода с изделием, а слишком большой — к резкому возраста­нию напряжения и ее обрыву.

Принцип электродуговой сварки основан на использовании температуры электрического разряда, возникающего между сварочным электродом и металлической заготовкой.

Дуговой разряд образуется вследствие электрического пробоя воздушного промежутка. При возникновении этого явления происходит ионизация молекул газа, повышение его температуры и электропроводности, переход в состояние плазмы.

Горение сварочной дуги сопровождается выделением большого количества световой и особенно тепловой энергии, вследствие чего резко повышается температура, и происходит локальное плавление металла заготовки. Это и есть сварка.

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Среда горения

Существует несколько различных сварочных технологий, использующих электродуговые разряды, отличающиеся свойствами и параметрами. Электрическая сварочная дуга имеет следующие разновидности:

  • открытая. Горение разряда происходит непосредственно в атмосфере;
  • закрытая. Образующаяся при горении высокая температура вызывает обильное выделение газов от сгорающего флюса. Флюс содержится в обмазке сварочных электродов;
  • в среде защитных газов. В этом варианте, в зону сварки подается газ, чаще всего, это гелий, аргон или углекислый газ.

Защита зоны сварки необходима для предотвращения активного окисления плавящегося металла под воздействием кислорода воздуха.

Слой окисла препятствует образованию сплошного сварного шва, металл в месте соединения приобретает пористость, в результате чего снижается прочность и герметичность стыка.

В какой-то мере дуга сама способна создавать микроклимат в зоне горения за счет образования области повышенного давления, препятствующего притоку атмосферного воздуха.

Применение флюса позволяет более активно выдавливать воздух из зоны сварки. Использование среды защитных газов, подаваемых под давлением, решает эту задачу практически полностью.

Продолжительность разряда

Кроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

В таких устройствах сварка осуществляется короткими вспышками. За время вспышки, температура успевает возрасти до величины, достаточной для локального расплавления небольшой зоны, в которой образуется точечное соединение.

Большинство же применяемых сварочных технологий использует относительно продолжительное по времени горение дуги. В течение сварочного процесса происходит постоянное перемещение электрода вдоль соединяемых кромок.

Область повышенной температуры, создающая , перемещается вслед за электродом. После перемещения сварочного электрода, следовательно, и дугового разряда, температура пройденного участка снижается, происходит кристаллизация сварочной ванны и образование прочного сварного шва.

Структура дугового разряда

Область дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт .

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при , наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Температурные зоны

Следует заметить, что при любом виде сварки, как плавящимся, так и неплавящимся электродом, столб дуги (его центр) имеет самую высокую температуру – порядка 5000-7000 °C, а иногда и выше.

Зоны наиболее низкой температуры располагаются в одной из активных областей, катодной или анодной. В этих зонах может выделяться 60-70% тепла дуги.

Кроме интенсивного повышения температуры заготовки и сварочного электрода, разряд излучает инфракрасные и ультрафиолетовые волны, способные оказывать вредное влияние на организм сварщика. Это обусловливает необходимость применения защитных мер.

Что касается сварки переменным током, понятие полярности там не существует, так как положение анода и катода изменяется с промышленной частотой 50 колебаний в секунду.

Дуга в этом процессе обладает меньшей устойчивостью по сравнению с постоянным током, ее температура скачет. К преимуществам сварочных процессов на переменном токе, можно отнести только более простое и дешевое оборудование, да еще практически полное отсутствие такого явления, как магнитное дутье, о котором сказано выше.

Вольт-амперная характеристика

На графике представлены кривые зависимости напряжения источника питания от величины сварочного тока, называемые вольт–амперными характеристиками сварочного процесса.

Кривые красного цвета отображают изменение напряжения между электродом и заготовкой в фазах возбуждения сварочной дуги и устойчивого ее горения. Начальные точки кривых соответствуют напряжению холостого хода источника питания.

В момент возбуждения сварщиком дугового разряда, напряжение резко снижается вплоть до того периода, когда параметры дуги стабилизируются, устанавливается значение тока сварки, зависящее от диаметра применяемого электрода, мощности источника питания и установленной длины дуги.

С наступлением этого периода, напряжение и температура дуги стабилизируются, и весь процесс приобретает устойчивый характер.

ЛЕКЦИЯ 5

ЭЛЕКТРИЧЕСКАЯ ДУГА

Возникновение и физические процессы в электрической дуге. Размыкание электрической цепи при значительных токах и напряжениях сопровождается электрическим разрядом между расходящимися контактами. Воздушный промежуток между контактами иони­зируется и становится проводящим, в нем горит дуга. Процесс отключения состоит в деионизации воздушного промежутка между контактами, т. е. в прекращении электрического разряда и восстановлении диэлектрических свойств. При особых условиях: малых токах и напряжениях, разрыве цепи переменного тока в момент перехода тока через нуль, может произойти без электрического разряда. Такое отключение называется безыскровым разрывом.

Зависимость падения напряжения на разрядном промежутке от тока электрического разряда в газах приведена на рис. 1.

Электрическая дуга сопровождается высокой температурой. Поэтому дуга – явление не только электрическое, но и тепловое. В обычных условиях воздух хороший изолятор. Для пробоя 1см воздушного промежутка требуется напряжение 30кВ. Чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: свободных электронов и положительных ионов. Процесс отделения от нейтральной частицы электронов и обра­зования свободных электронов и положительно заряженных ионов называется ионизацией . Ионизация газа происходит под действием высокой температуры и электрического поля. Для дуговых процессов в электрических аппаратах наибольшее значение имеют процессы у электродов (термоэлектрон­ная и автоэлектронная эмиссии) и процессы в дуговом промежутке (термическая и ударная ионизация).

Термоэлектронной эмиссией называется испускание электронов с накаленной поверхности. При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в площадке контактирования. Площадка разогревается, расплавляется и образуется контактный перешеек из расплавленного металла. Перешеек при дальнейшем расхождении контактов разрывается и происходит испарение металла контактов. На отрицательном электроде образуется раскаленная площадка (катодное пятно), которая служит основа­нием дуги и очагом излучения элект­ронов. Термоэлектронная эмиссия является причиной возникновения электрической дуги при размыкании контактов. Плотность тока термоэлектронной эмиссии зависит от тем­пературы и материала электрода.

Автоэлектронной эмиссией называется явление испускания электронов с ка­тода под воздействием сильного электрического поля. При разомкнутых контактах к ним приложено напряжение сети. При замыкании контактов, по мере приближения подвижного контакта к неподвижному растет напряженность электрического поля между контактами. При критическом расстоянии между контактами напряженность поля достигает 1000 кВ/мм. Такой напряженности электрического поля достаточно для вырывания электронов из холодного катода. Ток автоэлектронной эмиссии мал служит только началом дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контак­тах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Возникновения электрической дуги при замыкании контактов происходит по причине автоэлектронной эмиссия.

Ударной ионизацией называется возникновение свободных электронов и положительных ионов при столкновении электронов с нейтральной частицей. Свободный электрон разбивает нейтральную частицу. В результате получатся новый свободный электрон и положительный ион. Новый электрон, в свою очередь, ионизирует следующую частицу. Чтобы электрон мог ионизировать частицу газа, он должен двигаться с определенной скоростью. Скорость электрона зависит от разности потенциалов на длине свободного пробега. Поэтому обычно указывается не скорость движения электрона, а минимальную разность потенциалов на длине свободного пути, чтобы электрон приобрел необходимую скорость. Эта разность потенциалов называется потенциал ионизации. Потенциал ионизации газовой смеси определяется самым низким из потенциалов ионизации входящих в газовую смесь компонентов и мало зависит от концентрации компонентов. Потенциал ионизации для газов составляет 13÷16В (азот, кислород, водород), для паров металла примерно в два раза ниже: 7,7В для паров меди.

Термическая ионизация происходит под воздействием высокой температуры. Температура ствола дуги достигает 4000÷7000 К, а иногда 15000 К. При такой температуре резко возрастает количество и скорость движущихся частиц газа. При столкновении атомы и молекулы разрушаются, образуя заряженные частицы. Основной характеристикой термической ионизации является сте­пень ионизации, представляющая собой отношение числа ионизированных атомов к общему числу атомов в дуговом промежутке. Поддержание возникшего дугового разряда достаточным числом свободных зарядов обеспечивается термической ионизацией.

Одновременно с процессами ионизации в дуге происходят обратные процессы деионизации – воссоединения заряженных частиц и образование нейтральных молекул. При возникновении дуги преобла­дают процессы ионизации, в устойчиво горящей дуге процессы ионизации и деионизации одинаково интенсивны, при преобладании процессов деиониза­ции дуга гаснет.

Деионизация происходит главным образом за счет рекомбинации и диф­фузии. Рекомбинацией называется процесс, при котором различно заряженные частицы, при­ходя в соприкосновение, образуют нейтральные частицы. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги. Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в стволе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур ствола дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожную роль. В дуге, обдуваемой сжатым воздухом, а также в быстро движущейся открытой дуге деионизация за счет диффузии может по значению быть близкой к рекомбинации. В дуге, горящей в узкой щели или закрытой камере, деионизация происходит за счет рекомби­нации.

ПАДЕНИЕ НАПРЯЖЕНИЯ НА ЭЛЕКТРИЧЕСКОЙ ДУГЕ

Падение напряжения вдоль стационарной дуги распределяется неравномерно. Картина изменения падения напряжения U д и продольного градиента напряжения (падение напряжения на единицу длины дуги) Е д вдоль дуги приведена на рис. 2.

Ход характеристик U д и Е д в приэлектродных областях резко отличается от хода характеристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке порядка 10 -3 мм имеет место резкое падение напря­жения, называемое прикатод­ным U к и прианодным U а .

В прикатодной области образуется дефицит электронов из-за высокой их подвижности. В этой области образуется объемный положительный заряд, который обуславливает разность потенциалов U к , порядка 10÷20В. Напряженность поля в прикатодной области достигает 10 5 В/см и обеспечивает выход электронов с катода за счет автоэлектронной эмиссии. Кроме того, напряжение у катода обеспечивает выделение необходимой энергии для подогрева катода и обеспечения термоэлектронной эмиссии.

Рис. 2. Распределение напряжения на

стационарной дуге постоянного тока

В прианодной области образуется отрицательный объемный заряд, обуславливающий разность потенциалов U а . Направляющиеся к аноду электроны, ускоряются и выбивают из анода вторичные электроны, которые существуют вблизи анода.

Суммарное зна­чение прианодного и прикатодного падений напряжений называют приэлектродным падением напряжения:
и составляет 20-30В.

В остальной части дуги, называемой стволом дуги, падение напряжения U д прямо пропорционально длине дуги:

,

где E СТ – продольный градиент напряжения в стволе дуги, l СТ – длина ствола дуги.

Градиент здесь постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100÷200 В/см.

Таким образом, падение напряжения на дуговом промежутке:

УСТОЙЧИВОСТЬ ЭЛЕКТРИЧЕСКОЙ ДУГИ ПОСТОЯННОГО ТОКА

Чтобы погаситьэлектрическую дугу постоянного тока, необходимо создать условия, при которых в дуговом промежутке процессы деионизации превосходили бы процессы ионизации при всех значениях тока.

Для цепи (рис. 3), содержащей сопротивление R , индуктивность L , дуговой промежуток с падением напряжения U д , источник постоянного тока напряжением U , в переходном режиме (
) справедливо уравнение Кирхгофа:

, (1)

где – падение напряжения на ин­дуктивности при изменении тока.

При устойчиво горящей дуге (стационарное состояние
) выражение (1) принимает вид:

. (2)

Для погасания дуги необходимо, чтобы ток в ней все время уменьшался. Это означает, что
:



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!