Фотосинтез идет. Процесс фотосинтеза у растений

Растения превращают солнечный свет в запасенную химическую энергию в два этапа: сначала они улавливают энергию солнечного света, а затем используют ее для связывания углерода с образованием органических молекул.

Зеленые растения — биологи называют их автотрофами — основа жизни на планете. С растений начинаются практически все пищевые цепи. Они превращают энергию, падающую на них в форме солнечного света, в энергию, запасенную в углеводах (см. Биологические молекулы), из которых важнее всего шестиуглеродный сахар глюкоза. Этот процесс преобразования энергии называется фотосинтезом. Другие живые организмы получают доступ к этой энергии, поедая растения. Так создается пищевая цепь, поддерживающая планетарную экосистему.

Кроме того, воздух, которым мы дышим, благодаря фотосинтезу насыщается кислородом. Суммарное уравнение фотосинтеза выглядит так:

вода + углекислый газ + свет → углеводы + кислород

Растения поглощают углекислый газ, образовавшийся при дыхании, и выделяют кислород — продукт жизнедеятельности растений (см. Гликолиз и дыхание). К тому же, фотосинтез играет важнейшую роль в круговороте углерода в природе .

Кажется удивительным, что при всей важности фотосинтеза ученые так долго не приступали к его изучению. После эксперимента Ван Гельмонта , поставленного в XVII веке, наступило затишье, и лишь в 1905 году английский физиолог растений Фредерик Блэкман (Frederick Blackman, 1866-1947) провел исследования и установил основные процессы фотосинтеза. Он показал, что фотосинтез начинается при слабом освещении, что скорость фотосинтеза возрастает с увеличением светового потока, но, начиная с определенного уровня, дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза. Блэкман показал, что повышение температуры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и освещения скорость фотосинтеза возрастает значительно больше, чем при одном лишь усилении освещения.

На основании этих экспериментов Блэкман заключил, что происходят два процесса: один из них в значительной степени зависит от уровня освещения, но не от температуры, тогда как второй сильно определяется температурой независимо от уровня света. Это озарение легло в основу современных представлений о фотосинтезе. Два процесса иногда называют «световой» и «темновой» реакцией, что не вполне корректно, поскольку оказалось, что, хотя реакции «темновой» фазы идут и в отсутствии света, для них необходимы продукты «световой» фазы.

Фотосинтез начинается с того, что излучаемые солнцем фотоны попадают в особые пигментные молекулы, находящиеся в листе, — молекулы хлорофилла . Хлорофилл содержится в клетках листа, в мембранах клеточных органелл хлоропластов (именно они придают листу зеленую окраску). Процесс улавливания энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул — эти кластеры принято называть Фотосистемой I и Фотосистемой II . Номера кластеров отражают порядок, в котором эти процессы были открыты, и это одна из забавных научных странностей, поскольку в листе сначала происходят реакции в Фотосистеме II, и лишь затем — в Фотосистеме I.

Когда фотон сталкивается с 250-400 молекулами Фотосистемы II, энергия скачкообразно возрастает и передается на молекулу хлорофилла. В этот момент происходят две химические реакции: молекула хлорофилла теряет два электрона (которые принимает другая молекула, называемая акцептором электронов) и расщепляется молекула воды. Электроны двух атомов водорода, входивших в молекулу воды, возмещают два потерянных хлорофиллом электрона.

После этого высокоэнергетический («быстрый») электрон перекидывают друг другу, как горячую картофелину, собранные в цепочку молекулярные переносчики. При этом часть энергии идет на образование молекулы аденозинтрифосфата (АТФ), одного из основных переносчиков энергии в клетке (см. Биологические молекулы). Тем временем немного другая молекула хлорофилла Фотосистемы I поглощает энергию фотона и отдает электрон другой молекуле-акцептору. Этот электрон замещается в хлорофилле электроном, прибывшим по цепи переносчиков из Фотосистемы II. Энергия электрона из Фотосистемы I и ионы водорода, образовавшиеся ранее при расщеплении молекулы воды, идут на образование НАДФ-Н, другой молекулы-переносчика.

В результате процесса улавливания света энергия двух фотонов запасается в молекулах, используемых клеткой для осуществления реакций, и дополнительно образуется одна молекула кислорода. (Отмечу, что в результате еще одного, значительно менее эффективного процесса с участием одной лишь Фотосистемы I, также образуются молекулы АТФ.) После того как солнечная энергия поглощена и запасена, наступает очередь образования углеводов. Основной механизм синтеза углеводов в растениях был открыт Мелвином Калвином, проделавшим в 1940-е годы серию экспериментов, ставших уже классическими. Калвин и его сотрудники выращивали водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Им удалось установить химические реакции темновой фазы, прерывая фотосинтез на разных стадиях.

Цикл превращения солнечной энергии в углеводы — так называемый цикл Калвина — сходен с циклом Кребса (см. Гликолиз и дыхание): он тоже состоит из серии химических реакций, которые начинаются с соединения входящей молекулы с молекулой-«помощником» с последующей инициацией других химических реакций. Эти реакции приводят к образованию конечного продукта и одновременно воспроизводят молекулу-«помощника», и цикл начинается вновь. В цикле Калвина роль такой молекулы-«помощника» выполняет пятиуглеродный сахар рибулозодифосфат (РДФ). Цикл Калвина начинается с того, что молекулы углекислого газа соединяются с РДФ. За счет энергии солнечного света, запасенной в форме АТФ и НАДФ-H, сначала происходят химические реакции связывания углерода с образованием углеводов, а затем — реакции воссоздания рибулозодифосфата. На шести витках цикла шесть атомов углерода включаются в молекулы предшественников глюкозы и других углеводов. Этот цикл химических реакций будет продолжаться до тех пор, пока поступает энергия. Благодаря этому циклу энергия солнечного света становится доступной живым организмам.

В большинстве растений осуществляется описанный выше цикл Калвина, в котором углекислый газ, непосредственно участвуя в реакциях, связывается с рибулозодифосфатом. Эти растения называются C 3 -растениями, поскольку комплекс «углекислый газ—рибулозодифосфат» расщепляется на две молекулы меньшего размера, каждая из которых состоит из трех атомов углерода. У некоторых растений (например, у кукурузы и сахарного тростника, а также у многих тропических трав, включая ползучий сорняк) цикл осуществляется по-другому. Дело в том, что углекислый газ в норме проникает через отверстия в поверхности листа, называемые устьицами . При высоких температурах устьица закрываются, защищая растение от чрезмерной потери влаги. В C 3 -растения при закрытых устьицах прекращается и поступление углекислого газа, что приводит к замедлению фотосинтеза и изменению фотосинтетических реакций. В случае же кукурузы углекислый газ присоединяется к трехуглеродной молекуле на поверхности листа, затем переносится во внутренние участки листа, где углекислый газ высвобождается и начинается цикл Калвина. Благодаря этому довольно сложному процессу фотосинтез у кукурузы осуществляется даже в очень жаркую, сухую погоду. Растения, в которых происходит такой процесс, мы называем C 4 -растениями, поскольку углекислый газ в начале цикла транспортируется в составе четырехуглеродной молекулы. C 3 -растения — это в основном растения умеренного климата, а C 4 -растения в основном произрастают в тропиках.

Гипотеза Ван Ниля

Процесс фотосинтеза описывается следующей химической реакцией:

СО 2 + Н 2 О + свет → углевод + О 2

В начале XX века считалось, что кислород, выделяющийся в процессе фотосинтеза, образуется в результате расщепления углекислого газа. Эту точку зрения опроверг в 1930-е годы Корнелис Бернардус Ван Ниль (Van Niel, 1897-1986), в то время аспирант Стэнфордского университета в штате Калифорния. Он занимался изучением пурпурной серобактерии (на фото), которая нуждается для осуществления фотосинтеза в сероводороде (H 2 S) и выделяет в качестве побочного продукта жизнедеятельности атомарную серу. Для таких бактерий уравнение фотосинтеза выглядит следующим образом:

СО 2 + Н 2 S + свет → углевод + 2S.

Исходя из сходства этих двух процессов, Ван Ниль предположил, что при обычном фотосинтезе источником кислорода является не углекислый газ, а вода, поскольку у серобактерий, в метаболизме которых вместо кислорода участвует сера, фотосинтез возвращает эту серу, являющуюся побочным продуктом реакций фотосинтеза. Современное подробное объяснение фотосинтеза подтверждает эту догадку: первой стадией процесса фотосинтеза (осуществляемой в Фотосистеме II) является расщепление молекулы воды.

Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение , жизненно необходимого для существования жизни на нашей удивительной планете.

История открытия фотосинтеза

История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли. А затем на протяжении пяти лет растение поливалось исключительно водой. Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 60 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.

Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый). Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой. Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию. Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).

Так был установлен факт, что зеленые части растений способны выделять кислород. Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых растений – фактически была открыта еще одна сторона фотосинтеза. Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.

И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.

Значение фотосинтеза в жизни человека

Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.

Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость. Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».

Формула фотосинтеза

Общую формулу фотосинтеза можно записать следующим образом:

Вода + Углекислый газ + Свет > Углеводы + Кислород

А вот такой вид имеет формула химической реакции фотосинтеза

6СО 2 + 6Н 2 О = С6Н 12 О 6 + 6О 2

Значение фотосинтеза для растений

А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям. В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.

Как происходит фотосинтез

Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу листьев деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света. Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород. Механизмы фотосинтеза являются гениальным творением природы.

Фазы фотосинтеза

Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.

Световая фаза фотосинтеза

Эта фаза осуществляется на тилакойдов. Что же такое эти тиалакойды? Тилакойды это структуры, находящиеся внутри хлоропластов и ограниченные мембраной.

Порядок процессов световой фазы фотосинтеза выглядит так:

  • Свет попадает на молекулу хлорофилла, поглощается зеленым пигментом, чем приводит его в возбужденное состояние. Электрон, который входит в эту молекулу переходит на более высокий уровень и берет участие в процессе синтеза.
  • Идет расщепление воды, во время которого протоны, под действием электронов преобразуются в атомы водорода, которые впоследствии расходуются на синтез углеводов.
  • На последнем этапе световой фазы фотосинтеза происходит синтез АТФ (Аденозинтрифосфат). АТФ представляет собой органическое вещество, играющее роль своего рода аккумулятора энергии в биологических процессах.

Темновая фаза фотосинтеза

Эта фаза фотосинтеза протекает в стромах хлоропластов. Именно в ее ходе происходит выделение кислорода, а также синтез глюкозы. Можно подумать исходя из названия, что темновая фаза фотосинтеза происходит исключительно в темное время суток. На самом деле это не так, синтез глюкозы происходит круглосуточно, просто на этом этапе энергия света больше не расходуется и попросту она не нужна.

Фотосинтез, видео

И в завершение интересное образовательное видео про фотосинтез.

Объяснение такого объемного материала, каким является фотосинтез, лучше проводить на двух спаренных уроках – тогда не теряется целостность восприятия темы. Урок необходимо начать с истории изучения фотосинтеза, строения хлоропластов и проведения лабораторной работы по изучению хлоропластов листа. После этого необходимо перейти к изучению световой и темновой фаз фотосинтеза. При объяснении реакций, происходящих в этих фазах, необходимо составить общую схему:

По ходу объяснения надо нарисовать схему световой фазы фотосинтеза .

1. Поглощение кванта света молекулой хлорофилла, которая находится в мембранах тилакоидов гран, приводит к потере ею одного электрона и переводит ее в возбужденное состояние. Электроны переносятся по электронтранспортной цепи, что приводит к восстановлению НАДФ + до НАДФ Н.

2. Место вышедших электронов в молекулах хлорофилла занимают электроны молекул воды – так вода под действием света подвергается разложению (фотолизу). Образовавшиеся гидроксилы ОН– становятся радикалами и объединяются в реакции 4 ОН – → 2 H 2 O +O 2 , приводящей к выделению в атмосферу свободного кислорода.

3. Ионы водорода Н+ не проникают через мембрану тилакоида и накапливаются внутри, заряжая его положительно, что приводит к увеличению разности электрических потенциалов (РЭП) на мембране тилакоида.

4. При достижении критической РЭП протоны устремляются по протонному каналу наружу. Этот поток положительно заряженных частиц используется для получения химической энергии с помощью специального ферментного комплекса. Образовавшиеся в результате молекулы АТФ переходят в строму, где участвуют в реакциях фиксации углерода.

5. Ионы водорода, вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ + .

Спонсор публикации статьи группа компаний "Арис". Производство, продажа и аренда строительных лесов (рамные фасадные ЛРСП, рамные высотные А-48 и др.) и вышек-тур (ПСРВ "Арис", ПСРВ "Арис компакт" и "Арис-дачная", помосты). Хомуты для строительных лесов, строительные ограждения, колесные опоры для вышек. Узнать подробнее о компании, посмотреть каталог продукции и цены, контакты Вы сможете на сайте, который располагается по адресу: http://www.scaffolder.ru/.

После рассмотрения данного вопроса, проанализировав его еще раз по составленной схеме, предлагаем учащимся заполнить таблицу.

Таблица. Реакции световой и темновой фаз фотосинтеза

После заполнения первой части таблицы можно перейти к разбору темновой фазы фотосинтеза .

В строме хлоропласта постоянно присутствуют пентозы – углеводы, представляющие собой пятиуглеродные соединения, которые образуются в цикле Кальвина (цикл фиксации углекислого газа).

1. К пентозе присоединяется углекислый газ, образуется неустойчивое шестиуглеродное соединение, которое распадается на две молекулы 3-фосфоглицериновой кислоты (ФГК).

2. Молекулы ФГК принимают от АТФ по одной фосфатной группе и обогащаются энергией.

3. Каждая из ФГК присоединяет по одному атому водорода от двух переносчиков, превращаясь в триозу. Триозы, объединяясь, образуют глюкозу, а затем крахмал.

4. Молекулы триозы, объединяясь в разных сочетаниях, образуют пентозы и вновь включаются в цикл.

Суммарная реакция фотосинтеза:

Схема. Процесс фотосинтеза

Тест

1. Фотосинтез осуществляется в органеллах:

а) митохондрии;
б) рибосомы;
в) хлоропласты;
г) хромопласты.

2. Пигмент хлорофилл сосредоточен в:

а) оболочке хлоропласта;
б) строме;
в) гранах.

3. Хлорофилл поглощает свет в области спектра:

а) красной;
б) зеленой;
в) фиолетовой;
г) во всей области.

4. Свободный кислород при фотосинтезе выделяется при расщеплении:

а) углекислого газа;
б) АТФ;
в) НАДФ;
г) воды.

5. Свободный кислород образуется в:

а) темновой фазе;
б) световой фазе.

6. В световой фазе фотосинтеза АТФ:

а) синтезируется;
б) расщепляется.

7. В хлоропласте первичный углевод образуется в:

а) световой фазе;
б) темновой фазе.

8. НАДФ в хлоропласте необходим:

1) как ловушка для электронов;
2) в качестве фермента для образования крахмала;
3) как составная часть мембраны хлоропласта;
4) в качестве фермента для фотолиза воды.

9. Фотолиз воды – это:

1) накопление воды под действием света;
2) диссоциация воды на ионы под действием света;
3) выделение водяных паров через устьица;
4) нагнетание воды в листья под действием света.

10. Под воздействием квантов света:

1) хлорофилл превращается в НАДФ;
2) электрон покидает молекулу хлорофилла;
3) хлоропласт увеличивается в объеме;
4) хлорофилл превращается в АТФ.

ЛИТЕРАТУРА

Богданова Т.П., Солодова Е.А. Биология. Справочник для старшеклассников и поступающих в вузы. – М.: ООО «АСТ-Пресс школа», 2007.

ФОТОСИНТЕЗ
образование живыми растительными клетками органических веществ, таких, как сахара и крахмал, из неорганических - из СО2 и воды - с помощью энергии света, поглощаемого пигментами растений. Это процесс производства пищи, от которого зависят все живые существа - растения, животные и человек. У всех наземных растений и у большей части водных в ходе фотосинтеза выделяется кислород. Некоторым организмам, однако, свойственны другие виды фотосинтеза, проходящие без выделения кислорода. Главную реакцию фотосинтеза, идущего с выделением кислорода, можно записать в следующем виде:

К органическим веществам относятся все соединения углерода за исключением его оксидов и нитридов. В наибольшем количестве образуются при фотосинтезе такие органические вещества, как углеводы (в первую очередь сахара и крахмал), аминокислоты (из которых строятся белки) и, наконец, жирные кислоты (которые в сочетании с глицерофосфатом служат материалом для синтеза жиров). Из неорганических веществ для синтеза всех этих соединений требуются вода (Н2О) и диоксид углерода (СО2). Для аминокислот требуются, кроме того, азот и сера. Растения могут поглощать эти элементы в форме их оксидов, нитрата (NO3-) и сульфата (SO42-) или в других, более восстановленных формах, таких, как аммиак (NH3) или сероводород (сульфид водорода H2S). В состав органических соединений может включаться при фотосинтезе также фосфор (растения поглощают его в виде фосфата) и ионы металлов - железа и магния. Марганец и некоторые другие элементы тоже необходимы для фотосинтеза, но лишь в следовых количествах. У наземных растений все эти неорганические соединения, за исключением СО2, поступают через корни. СО2 растения получают из атмосферного воздуха, в котором средняя его концентрация составляет 0,03%. СО2 поступает в листья, а О2 выделяется из них через небольшие отверстия в эпидермисе, называемые устьицами. Открывание и закрывание устьиц регулируют особые клетки - их называют замыкающими - тоже зеленые и способные осуществлять фотосинтез. Когда на замыкающие клетки падает свет, в них начинается фотосинтез. Накопление его продуктов вынуждает эти клетки растягиваться. При этом устьичное отверстие открывается шире, и СО2 проникает к нижележащим слоям листа, клетки которых могут теперь продолжать фотосинтез. Устьица регулируют и испарение воды листьями, т.н. транспирацию, поскольку большая часть водяных паров проходит именно через эти отверстия. Водные растения добывают все необходимые им питательные вещества из воды, в которой живут. СО2 и ион бикарбоната (HCO3-) тоже содержатся и в морской, и в пресной воде. Водоросли и другие водные растения получают их непосредственно из воды. Свет в фотосинтезе играет роль не только катализатора, но и одного из реагентов. Значительная часть световой энергии, используемой растениями при фотосинтезе, запасается в виде химической потенциальной энергии в продуктах фотосинтеза. Для фотосинтеза, идущего с выделением кислорода, в той или иной мере пригоден любой видимый свет от фиолетового (длина волны 400 нм) до среднего красного (700 нм). При некоторых видах бактериального фотосинтеза, не сопровождающегося выделением O2, может эффективно использоваться свет с большей длиной волны, вплоть до дальнего красного (900 нм). Выяснение природы фотосинтеза началось еще во времена зарождения современной химии. Работы Дж.Пристли (1772), Я.Ингенхауза (1780), Ж.Сенебье (1782), а также химические исследования А.Лавуазье (1775, 1781) позволили сделать вывод, что растения превращают диоксид углерода в кислород и для этого процесса необходим свет. Роль воды оставалась неизвестной до тех пор, пока на нее не указал в 1808 Н.Соссюр. В своих очень точных экспериментах он измерял прирост сухого веса растения, растущего в горшке с землей, а также определял объем поглощенного диоксида углерода и выделенного кислорода. Соссюр подтвердил, что весь углерод, включенный растением в органические вещества, происходит из диоксида углерода. В то же время он обнаружил, что прирост сухого вещества растения был больше, чем разность между весом поглощенного диоксида углерода и весом выделенного кислорода. Поскольку вес почвы в горшке существенно не изменялся, единственным возможным источником увеличения веса следовало считать воду. Так было показано, что одним из реагентов в фотосинтезе является вода. Значение фотосинтеза как одного из процессов превращения энергии не могло быть оценено до тех пор, пока не возникло само представление о химической энергии. В 1845 Р.Майер пришел к выводу, что при фотосинтезе световая энергия переходит в химическую потенциальную энергию, запасаемую в его продуктах.





Роль фотосинтеза. Суммарный итог химических реакций фотосинтеза может быть описан для каждого из его продуктов отдельным химическим уравнением. Для простого сахара глюкозы уравнение имеет следующий вид:

Уравнение показывает, что в зеленом растении за счет энергии света из шести молекул воды и шести молекул диоксида углерода образуется одна молекула глюкозы и шесть молекул кислорода. Глюкоза - это лишь один из многих углеводов, синтезируемых в растениях. Ниже приведено общее уравнение для образования углевода с n атомами углерода в молекуле:

Уравнения, описывающие образование других органических соединений, имеют не столь простой вид. Для синтеза аминокислоты требуются дополнительные неорганические соединения, как например при образовании цистеина:

Роль света как реагента в процессе фотосинтеза легче доказать, если обратиться к другой химической реакции, а именно к горению. Глюкоза - одна из субъединиц целлюлозы, главного компонента древесины. Горение глюкозы описывается следующим уравнением:

Это уравнение представляет собой обращение уравнения фотосинтеза глюкозы, если не считать того, что вместо световой энергии выделяется главным образом тепло. По закону сохранения энергии, если при горении энергия выделяется, то при обратной реакции, т.е. при фотосинтезе, она должна поглощаться. Биологический аналог горения - дыхание, поэтому дыхание описывается тем же уравнением, что и небиологическое горение. Для всех живых клеток, за исключением клеток зеленых растений на свету, источником энергии служат биохимические реакции. Дыхание - главный биохимический процесс, высвобождающий энергию, запасенную в ходе фотосинтеза, хотя между этими двумя процессами могут лежать длинные пищевые цепи. Постоянный приток энергии необходим для любого проявления жизнедеятельности, и световая энергия, которую фотосинтез преобразует в химическую потенциальную энергию органических веществ и использует на выделение свободного кислорода, - это единственно важный первичный источник энергии для всего живого. Живые клетки затем окисляют ("сжигают") эти органические вещества с помощью кислорода, и часть энергии, высвободившейся при соединении кислорода с углеродом, водородом, азотом и серой, запасают для использования в различных процессах жизнедеятельности, таких, как движение или рост. Соединяясь с перечисленными элементами, кислород образует их оксиды - диоксид углерода, воду, нитрат и сульфат. Тем самым цикл завершается. Почему свободный кислород, единственным источником которого на Земле служит фотосинтез, так необходим для всего живого? Причина заключается в его высокой реакционной способности. В электронном облаке нейтрального атома кислорода на два электрона меньше, чем требуется для наиболее стабильной электронной конфигурации. Поэтому у атомов кислорода сильно выражена тенденция к приобретению двух дополнительных электронов, что достигается путем объединения (образования двух связей) с другими атомами. Атом кислорода может образовать две связи с двумя разными атомами или образовать двойную связь с одним каким-нибудь атомом. В каждой из таких связей один электрон поставляет атом кислорода, а второй электрон поставляется другим атомом, участвующим в образовании связи. В молекуле воды (Н2О), например, каждый из двух атомов водорода поставляет для образования связи с кислородом свой единственный электрон, удовлетворяя тем самым свойственное кислороду стремление к приобретению двух дополнительных электронов. В молекуле СО2 каждый из двух атомов кислорода образует двойную связь с одним и тем же атомом углерода, имеющим четыре связующих электрона. Таким образом, и в Н2О и в СО2 у атома кислорода столько электронов, сколько необходимо для стабильной конфигурации. Если, однако, два атома кислорода соединяются друг с другом, то электронные орбитали этих атомов допускают возникновение только одной связи. Потребность в электронах оказывается, таким образом, удовлетворена только наполовину. Поэтому молекула О2 по сравнению с молекулами СО2 и Н2О менее стабильна и более реакционноспособна. Органические продукты фотосинтеза, например углеводы, (СН2О)n, вполне стабильны, поскольку в них каждый из атомов углерода, водорода и кислорода получает столько электронов, сколько необходимо для образования наиболее стабильной конфигурации. Процесс фотосинтеза, в результате которого образуются углеводы, превращает, следовательно, два очень стабильных вещества, СО2 и Н2О, в одно вполне стабильное, (СН2О)n, и одно менее стабильное, О2. Накопление в результате фотосинтеза огромных количеств О2 в атмосфере и его высокая реакционная способность определяют его роль универсального окислителя. Когда какой-нибудь элемент отдает электроны или атомы водорода, мы говорим, что этот элемент окисляется. Присоединение электронов или образование связей с водородом, как у атомов углерода при фотосинтезе, называют восстановлением. Используя эти понятия, фотосинтез можно определить как окисление воды, сопряженное с восстановлением диоксида углерода или других неорганических оксидов.
Механизм фотосинтеза. Световая и темновая стадии. В настоящее время установлено, что фотосинтез протекает в две стадии: световую и темновую. Световая стадия - это процесс использования света для расщепления воды; при этом выделяется кислород и образуются богатые энергией соединения. Темновая стадия включает группу реакций, в которых используются высокоэнергетические продукты световой стадии для восстановления СО2 до простого сахара, т.е. для ассимиляции углерода. Поэтому темновую стадию называют также стадией синтеза. Термин "темновая стадия" означает лишь то, что свет в ней непосредственно не участвует. Современные представления о механизме фотосинтеза сформировались на основе исследований, проведенных в 1930-1950-х годах. До этого на протяжении многих лет ученых вводила в заблуждение на первый взгляд простая, однако неверная гипотеза, согласно которой О2 образуется из СО2, а освободившийся углерод реагирует с Н2О, в результате чего и образуются углеводы. В 1930-х годах, когда выяснилось, что у некоторых серных бактерий кислород при фотосинтезе не выделяется, биохимик К. ван Ниль предположил, что кислород, выделяющийся в процессе фотосинтеза у зеленых растений, происходит из воды. У серных бактерий реакция протекает следующим образом:

Вместо О2 эти организмы образуют серу. Ван Ниль пришел к заключению, что все виды фотосинтеза можно описать уравнением

где Х - кислород в фотосинтезе, идущем с выделением О2, и сера в фотосинтезе серных бактерий. Ван Ниль также предположил, что этот процесс включает две стадии: световую и стадию синтеза. Эту гипотезу подкрепило открытие физиолога Р.Хилла. Он обнаружил, что разрушенные или частично инактивированные клетки способны на свету осуществлять реакцию, в которой кислород выделяется, но СО2 не восстанавливается (ее назвали реакцией Хилла). Чтобы эта реакция могла идти, требовалось добавить какой-нибудь окислитель, способный присоединять электроны или водородные атомы, отдаваемые кислородом воды. Один из реагентов Хилла - это хинон, который, присоединив два атома водорода, превращается в дигидрохинон. Другие реагенты Хилла содержали трехвалентное железо (ион Fe3+), которое, присоединив один электрон от кислорода воды, превращалось в двухвалентное (Fe2+). Так было показано, что переход водородных атомов от кислорода воды на углерод может совершаться в форме независимого движения электронов и ионов водорода. В настоящее время установлено, что для запасания энергии важен именно переход электронов от одного атома к другому, тогда как ионы водорода могут переходить в водный раствор, а при необходимости вновь из него извлекаться. Реакция Хилла, в которой световая энергия используется для того, чтобы вызвать перенос электронов от кислорода на окислитель (акцептор электронов), была первой демонстрацией перехода световой энергии в химическую и моделью световой стадии фотосинтеза. Гипотеза, согласно которой кислород во время фотосинтеза непрерывно поступает от воды, нашла дальнейшее подтверждение в опытах с применением воды, меченной тяжелым изотопом кислорода (18О). Поскольку изотопы кислорода (обычный 16О и тяжелый 18О) по своим химическим свойствам одинаковы, растения используют Н218О точно так же, как Н216О. Оказалось, что в выделенном кислороде присутствует 18О. В другом опыте растения вели фотосинтез с Н216О и С18О2. При этом выделяемый в начале эксперимента кислород не содержал 18О. В 1950-х годах физиолог растений Д.Арнон и другие исследователи доказали, что фотосинтез включает световую и темновую стадии. Из растительных клеток были получены препараты, способные осуществлять всю световую стадию. Используя их, удалось установить, что на свету происходит перенос электронов от воды к фотосинтетическому окислителю, который в результате этого становится донором электронов для восстановления диоксида углерода на следующей стадии фотосинтеза. Переносчиком электронов служит никотинамидадениндинуклеотидфосфат. Его окисленную форму обозначают НАДФ+, а восстановленную (образующуюся после присоединения двух электронов и иона водорода) - НАДФЧН. В НАДФ+ атом азота пятивалентный (четыре связи и один положительный заряд), а в НАДФЧН - трехвалентный (три связи). НАДФ+ принадлежит к т.н. коферментам. Коферменты совместно с ферментами осуществляют многие химические реакции в живых системах, но в отличие от ферментов в ходе реакции изменяются. Большая часть преобразованной световой энергии, запасаемой в световой стадии фотосинтеза, запасается при переносе электронов от воды к НАДФ+. Образовавшийся НАДФЧН удерживает электроны не столь прочно, как кислород воды, и может отдавать их в процессах синтеза органических соединений, расходуя накопленную энергию на полезную химическую работу. Значительное количество энергии запасается еще и другим способом, а именно в форме АТФ (аденозинтрифосфата). Он образуется в результате отнятия воды от неорганического иона фосфата (HPO42-) и органического фосфата, аденозиндифосфата (АДФ), согласно следующему уравнению:


АТФ - богатое энергией соединение, и для его образования необходимо поступление энергии от какого-то источника. В обратной реакции, т.е. при расщеплении АТФ на АДФ и фосфат, энергия высвобождается. Во многих случаях АТФ отдает свою энергию другим химическим соединениям в реакции, в которой водород замещается на фосфат. В представленной ниже реакции сахар (ROH) фосфорилируется, превращаясь в сахарофосфат:


В сахарофосфате заключено больше энергии, чем в нефосфорилированном сахаре, поэтому его реакционная способность выше. АТФ и НАДФЧН, образующиеся (наряду с О2) в световой стадии фотосинтеза, используются затем на стадии синтеза углеводов и других органических соединений из диоксида углерода.
Устройство фотосинтетического аппарата. Световая энергия поглощается пигментами (так называют вещества, поглощающие видимый свет). У всех растений, осуществляющих фотосинтез, имеются различные формы зеленого пигмента хлорофилла, и, вероятно, во всех содержатся каротиноиды, окрашенные обычно в желтые тона. В высших растениях содержатся хлорофилл а (С55Н72О5N4Mg) и хлорофилл b (C55H70O6N4Mg), а также четыре основных каротиноида: b-каротин (С40Н56), лютеин (С40Н55О2), виолаксантин и неоксантин. Такое разнообразие пигментов обеспечивает широкий спектр поглощения видимого света, поскольку каждый из них "настроен" на свою область спектра. У некоторых водорослей набор пигментов приблизительно тот же, однако у многих из них имеются пигменты, несколько отличающиеся от перечисленных по своей химической природе. Все эти пигменты, как и весь фотосинтетический аппарат зеленой клетки, заключены в особые органеллы, окруженные мембраной, т.н. хлоропласты. Зеленая окраска растительных клеток зависит только от хлоропластов; остальные элементы клеток зеленых пигментов не содержат. Размеры и форма хлоропластов довольно сильно варьируют. Типичный хлоропласт напоминает по форме слегка изогнутый огурец размерами ок. 1 мкм в поперечнике и длиной ок. 4 мкм. В крупных клетках зеленых растений, таких, как клетки листа у большинства наземных видов, содержится много хлоропластов, а у мелких одноклеточных водорослей, например у Chlorella pyrenoidosa, имеется только один хлоропласт, занимающий большую часть клетки.
Познакомиться с очень сложным строением хлоропластов позволяет электронный микроскоп. Он дает возможность выявить гораздо более мелкие структуры, нежели те, какие видны в обычном световом микроскопе. В световом микроскопе нельзя различить частицы мельче 0,5 мкм. Разрешающая способность электронных микроскопов уже к 1961 позволяла наблюдать и в тысячу раз более мелкие частицы (порядка 0,5 нм). С помощью электронного микроскопа в хлоропластах выявлены очень тонкие мембранные структуры, т.н. тилакоиды. Это плоские мешочки, сомкнутые по краям и собранные в стопки, называемые гранами; на снимках граны похожи на стопки очень тонких блинов. Внутри мешочков имеется пространство - полость тилакоидов, а сами тилакоиды, собранные в граны, погружены в гелеобразную массу растворимых белков, заполняющую внутреннее пространство хлоропласта и называемую стромой. В строме содержатся также более мелкие и тонкие тилакоиды, которые соединяют друг с другом отдельные граны. Все тилакоидные мембраны состоят примерно из равного количества белков и липидов. Независимо от того, собраны они в граны или нет, именно в них сосредоточены пигменты и протекает световая стадия. Темновая стадия протекает, как принято считать, в строме.
Фотосистемы. Хлорофилл и каротиноиды, погруженные в тилакоидные мембраны хлоропластов, собраны в функциональные единицы - фотосистемы, каждая из которых содержит примерно 250 молекул пигментов. Устройство фотосистемы таково, что из всех этих молекул, способных поглощать свет, только одна особым образом расположенная молекула хлорофилла а может использовать его энергию в фотохимических реакциях - она является реакционным центром фотосистемы. Остальные молекулы пигментов, поглощая свет, передают его энергию на реакционный центр; эти светособирающие молекулы называют антенными. Существует два типа фотосистем. В фотосистеме I специфическая молекула хлорофилла а, составляющая реакционный центр, имеет оптимум поглощения при длине световой волны 700 нм (обозначается P700; P - пигмент), а в фотосистеме II - при 680 нм (P680). Обычно обе фотосистемы работают синхронно и (на свету) непрерывно, хотя фотосистема I может работать и отдельно.
Превращения световой энергии. Рассмотрение этого вопроса следует начать с фотосистемы II, где энергия света утилизируется реакционным центром P680. Когда в эту фотосистему поступает свет, его энергия возбуждает молекулу P680, и пара возбужденных, энергизованных электронов, принадлежащих этой молекуле, отрывается и переносится на молекулу акцептора (вероятно, хинона), обозначаемого буквой Q. Ситуацию можно представить себе таким образом, что электроны как бы подскакивают от полученного светового "толчка" и акцептор ловит их в каком-то верхнем положении. Если бы не акцептор, электроны вернулись бы в исходное положение (на реакционный центр), а высвобождающаяся при движении вниз энергия переходила бы в световую, т.е. тратилась бы на флуоресценцию. С этой точки зрения, акцептор электронов можно рассматривать как гаситель флуоресценции (отсюда его обозначение Q, от англ. quench - гасить).
Молекула P680, потеряв два электрона, окислилась, и для того, чтобы процесс на этом не прекратился, она должна восстановиться, т.е. получить два электрона из какого-либо источника. Таким источником служит вода: она расщепляется на 2Н+ и 1/2O2, отдавая два электрона на окисленный P680. Это светозависимое расщепление воды называется фотолизом. Ферменты, осуществляющие фотолиз, находятся на внутренней стороне мембраны тилакоидов, вследствие чего все ионы водорода накапливаются в полости тилакоидов. Важнейшим кофактором ферментов фотолиза служат атомы марганца. Переход двух электронов от реакционного центра фотосистемы на акцептор - это подъем "в гору", т.е. на более высокий энергетический уровень, и этот подъем обеспечивает энергия света. Далее в фотосистеме II пара электронов начинает поэтапный "спуск" от акцептора Q к фотосистеме I. Спуск происходит по электрон-транспортной цепи, очень сходной по организации с аналогичной цепью в митохондриях (см. также МЕТАБОЛИЗМ). В ее состав входят цитохромы, белки, содержащие железо и серу, медь-содержащий белок и другие компоненты. Постепенный спуск электронов от более энергизованного состояния к менее энергизованному сопряжен с синтезом АТФ из АДФ и неорганического фосфата. В результате энергия света не утрачивается, а запасается в фосфатных связях АТФ, которые могут быть использованы в процессах метаболизма. Образование АТФ в ходе фотосинтеза называют фотофосфорилированием. Одновременно с описанным процессом идет поглощение света в фотосистеме I. Здесь его энергия тоже используется на отрыв двух электронов от реакционного центра (P700) и передачу их на акцептор - железосодержащий белок. От этого акцептора через промежуточный переносчик (тоже белок, содержащий железо) оба электрона идут на НАДФ+, который в результате становится способным присоединить ионы водорода (образовавшиеся при фотолизе воды и сохранившиеся в тилакоидах) - и превращается в НАДФЧН. Что касается окислившегося в начале процесса реакционного центра P700, то он принимает два ("спустившихся") электрона из фотосистемы II, что возвращает его в исходное состояние. Суммарную реакцию световой стадии, протекающей при фотоактивации фотосистем I и II, можно представить следующим образом:

Общий энергетический выход потока электронов при этом составляет 1 молекулу АТФ и 1 молекулу НАДФН на 2 электрона. Путем сравнения энергии этих соединений с энергией света, обеспечивающего их синтез, было вычислено, что в процессе фотосинтеза запасается примерно 1/3 энергии поглощенного света. У некоторых фотосинтезирующих бактерий фотосистема I работает независимо. При этом поток электронов движется циклически от реакционного центра на акцептор и - по обходному пути - обратно на реакционный центр. В этом случае не происходит фотолиза воды и выделения кислорода, не образуется НАДФЧН, но АТФ синтезируется. Такой механизм световой реакции может иметь место и у высших растений в условиях, когда в клетках возникает избыток НАДФЧН.
Темновые реакции (стадия синтеза). Синтез органических соединений путем восстановления СО2 (а также нитрата и сульфата) тоже происходит в хлоропластах. АТФ и НАДФЧН, поставляемые световой реакцией, протекающей в тилакоидных мембранах, служат для реакций синтеза источником энергии и электронов. Восстановление СО2 есть результат переноса электронов на СО2. В ходе этого переноса некоторые из связей С-О заменяются на связи С-Н, С-С и О-Н. Процесс состоит из ряда этапов, часть которых (15 или более) образует цикл. Этот цикл был открыт в 1953 химиком М.Калвином и его сотрудниками. Использовав в своих опытах вместо обычного (стабильного) изотопа углерода его радиоактивный изотоп, эти исследователи смогли проследить путь углерода в изучаемых реакциях. В 1961 Калвин был удостоен за эту работу Нобелевской премии по химии. В цикле Калвина участвуют соединения с числом атомов углерода в молекулах от трех до семи. Все компоненты цикла, за исключением одного, представляют собой сахарофосфаты, т.е. сахара, у которых одна или две ОН-группы заменены на фосфатную группу (-ОРО3Н-). Исключение составляет 3-фосфоглицериновая кислота (ФГК; 3-фосфоглицерат), представляющая собой фосфат сахарной кислоты. Она сходна с фосфорилированным трехуглеродным сахаром (глицерофосфатом), но отличается от него тем, что имеет карбоксильную группу O=C-O-, т.е. один из ее углеродных атомов соединен с атомами кислорода тремя связями. Начать описание цикла удобно с рибулозомонофосфата, содержащего пять атомов углерода (C5). Образующийся в световой стадии АТФ реагирует с рибулозомонофосфатом, превращая его в рибулозодифосфат. Вторая фосфатная группа придает рибулозодифосфату дополнительную энергию, поскольку несет в себе часть энергии, запасенной в молекуле АТФ. Поэтому тенденция реагировать с другими соединениями и образовывать новые связи выражена у рибулозодифосфата сильнее. Именно этот C5-сахар присоединяет CO2 с образованием шестиуглеродного соединения. Последнее очень неустойчиво и под действием воды распадается на два фрагмента - две молекулы ФГК. Если иметь в виду только изменение числа атомов углерода в молекулах сахаров, то этот основной этап цикла, в котором происходит фиксация (ассимиляция) CO2, можно представить следующим образом:


Фермент, катализирующий фиксацию CO2 (специфическая карбоксилаза), присутствует в хлоропластах в очень больших количествах (свыше 16% от общего содержания в них белка); учитывая огромную массу зеленых растений, он, вероятно, является самым распространенным белком в биосфере. Следующий этап состоит в том, что две молекулы ФГК, образовавшиеся в реакции карбоксилирования, восстанавливаются каждая за счет одной молекулы НАДФЧН до трехуглеродного сахарофосфата (триозофосфата). Это восстановление происходит в результате переноса двух электронов на углерод карбоксильной группы ФГК. Однако и в данном случае необходим АТФ, чтобы снабдить молекулу дополнительной химической энергией и повысить ее реакционную способность. Задачу эту выполняет ферментная система, которая переносит концевую фосфатную группу АТФ на один из атомов кислорода карбоксильной группы (образуется группа), т.е. ФГК превращается в дифосфоглицериновую кислоту. Как только НАДФЧН передает углероду карбоксильной группы этого соединения один атом водорода плюс электрон (что равноценно двум электронам плюс ион водорода, Н+), одинарная связь С-О разрывается и связанный с фосфором кислород переходит в неорганический фосфат, HPO42-, а карбоксильная группа O=C-O- превращается в альдегидную O=C-H. Последняя характерна для определенного класса сахаров. В итоге ФГК при участии АТФ и НАДФЧН восстанавливается до сахарофосфата (триозофосфата). Весь описанный выше процесс может быть представлен следующими уравнениями: 1) Рибулозомонофосфат + АТФ -> Рибулозодифосфат + АДФ 2) Рибулозодифосфат + СО2 -> Нестойкое С6-соединение 3) Нестойкое С6-соединение + Н2О -> 2 ФГК 4) ФГК + АТФ + НАДФЧН -> АДФ + H2PO42- + Триозофосфат (С3). Конечным результатом реакций 1-4 оказывается образование из рибулозомонофосфата и СО2 двух молекул триозофосфата (С3) с затратой двух молекул НАДФЧН и трех молекул АТФ. Именно в этой серии реакций представлен весь вклад световой стадии - в форме АТФ и НАДФЧН - в цикл восстановления углерода. Разумеется, световая стадия должна дополнительно поставлять эти кофакторы для восстановления нитрата и сульфата и для превращения ФГК и триозофосфата, образуемых в цикле, в другие органические вещества - углеводы, белки и жиры. Значение последующих этапов цикла сводится к тому, что они приводят к регенерации пятиуглеродного соединения, рибулозомонофосфата, необходимого для возобновления цикла. Эту часть цикла можно записать в следующем виде:


что дает в сумме 5С3 -> 3С5. Три молекулы рибулозомонофосфата, образовавшиеся из пяти молекул триозофосфата, превращаются - после присоединения CO2 (карбоксилирования) и восстановления - в шесть молекул триозофосфата. Таким образом, в результате одного оборота цикла одна молекула диоксида углерода включается в состав трехуглеродного органического соединения; три оборота цикла суммарно дают новую молекулу последнего, а для синтеза молекулы шестиуглеродного сахара (глюкозы или фруктозы) необходимы две трехуглеродные молекулы и соответственно 6 оборотов цикла. Прирост органического вещества цикл отдает реакциям, в которых образуются различные сахара, жирные кислоты и аминокислоты, т.е. "строительные блоки" крахмала, жиров и белков. Тот факт, что прямыми продуктами фотосинтеза являются не только углеводы, но также аминокислоты, а возможно и жирные кислоты, тоже был установлен с помощью изотопной метки - радиоактивного изотопа углерода. Хлоропласт - это не просто частица, приспособленная для синтеза крахмала и сахаров. Это весьма сложная, прекрасно организованная "фабрика", способная не только производить все материалы, из которых построена она сама, но и снабжать восстановленными соединениями углерода те части клетки и те органы растения, которые сами фотосинтеза не ведут.
ЛИТЕРАТУРА
Эдвардс Дж., Уокер Д. Фотосинтез C3- и C4-растений: механизмы и регуляция. М., 1986 Рейвн П., Эверт Р., Айкхорн С. Современная ботаника, т. 1. М., 1990

Энциклопедия Кольера. - Открытое общество . 2000 .

Любой зеленый листик – это миниатюрная фабрика питательных веществ и кислорода, который необходим животным и человеку для нормальной жизнедеятельности. Процесс выработки данных веществ из воды и углекислоты из атмосферы называют фотосинтезом. Фотосинтез – это сложнейший химический процесс, который происходит с участием света. Конечно же, всем интересно как происходит фотосинтез. Сам процесс состоит из двух этапов: первый - это поглощение квантов света, а второй - использование их энергии в разных химических реакциях.

Как происходит процесс фотосинтеза

Растение поглощает свет при помощи зеленого вещества, которое называется хлорофилл. Хлорофилл содержится в хлоропластах, которые находятся в стеблях или плодах. Особенно большое их количество в листьях, потому что из-за своей очень плоской структуры листок может притянуть много света, соответственно, получить намного больше энергии для процесса фотосинтеза.

После поглощения хлорофилл находится в возбужденном состоянии и передает энергию другим молекулам организма растения, особенно, тем, которые непосредственно участвуют в фотосинтезе. Второй этап процесса фотосинтеза проходит уже без обязательного участия света и состоит в получении химической связи с участием углекислого газа, получаемого из воздуха и воды. На данной стадии синтезируются разные очень полезные для жизнедеятельности вещества, такие как крахмал и глюкоза.

Эти органические вещества используют сами растения для питания разных его частей, а также для поддержания нормальной жизнедеятельности. Кроме того, эти вещества также получают и животные, питаясь растениями. Люди тоже получают эти вещества, употребляя в пищу продукты животного и растительного происхождения.

Условия для фотосинтеза

Фотосинтез может происходить как под действием искусственного света, так и солнечного. Как правило, на природе растения интенсивно «работают» в весенне-летний период, когда необходимого солнечного света много. Осенью света меньше, день укорачивается, листья сначала желтеют, а потом опадают. Но стоит появиться весеннему теплому солнцу, как зеленая листва вновь появляется и зеленые «фабрики» снова возобновят свою работу, чтобы давать кислород, такой необходимый для жизни, а также множество других питательных веществ.

Где происходит фотосинтез

В основном фотосинтез, как процесс, происходит, как это уже было сказано, в листьях растений, потому как они способны принять на себя больше солнечного света, который очень необходим для процесса фотосинтеза.

Как итог можно сказать то, что процесс фотосинтеза является неотъемлемой частью жизнедеятельности растений.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!