Современные котельные. Котельные установки

КОНВЕКТИВНЫЙ ТЕПЛООБМЕН (ТЕПЛООТДАЧА)

Процесс теплообмена между поверхностью твердого тела и жидкостью, имеющих разные температуры, называется теплоотдачей. Теплоотдача обычно сопровождается теплопроводностью. Совместный процесс конвекции и теплопроводности называется конвективной теплоотдачей.

Согласно закону Ньютона-Рихмана тепловой поток в процессе теплоотдачи пропорционален коэффициенту теплоотдачи, площади поверхности теплообмена и разности температур поверхности тела и жидкости.

Q = (t с – t ж)F , 2.17

В расчетах разность температур t с – t ж берут по абсолютной величине. Коэффициент теплоотдачи α Вт/(м 2 ·К) характеризует интенсивность процесса теплоотдачи и зависит от большого числа факторов:

= ƒ (t ж, t ст, d, λ, ν, ω, ℓ, ġ, β Х …….) 2.18

где: t ж -температура жидкости, 0 С; t ст – температура стенки, 0 С; d –диаметр трубы, м;

λ – теплопроводность жидкости, Вт/ (м К): ω –скорость течения жидкости, м/с; ℓ – определяющий размер (для труб – диаметр), м; g – ускорение свободного падения, 9,8 м/с 2 ;

β – коэффициент объемного расширения, 1/К; Х – характер течения жидкости; ν – кинематический коэффициент вязкости, м 2 /с.

Из формулы 2.18 видно, что коэффициент теплоотдачи определить сложно, т.к. он зависит от большого числа переменных.

Существует два способа решения задач конвективного теплообмена: аналитический и с применением теории подобия.

При аналитическом решении задач конвективного теплообмена составляются дифференциальные уравнения, учитывающие тепловые и динамические явления в рассматриваемом процессе. Вывод таких уравнений рассматривается в специальной литературе.

Конвективный теплообмен в несжимаемой однофазной среде описывается следующими уравнениями.

Уравнение теплоотдачи:

α = -(λ/θ) (∂t / ∂n) n=0, где θ = t – t 0 . 2.19

Дифференциальное уравнение теплопроводности (сплошности) имеет вид:

∂t /∂τ = а 2 t = [∂ 2 t / ∂x 2 +∂ 2 t / ∂y 2 + ∂ 2 t / ∂z 2 ] λ /с ρ 2.20

где: ∂t /∂τ – температурное поле исследуемого объекта, которое зависит от изменения температуры по осям, т.е. от оператора Лапласа,

2 t = ∂ 2 t /∂x 2 + ∂ 2 t / ∂y 2 + ∂ 2 t /∂ z 2 , 2.21

и от теплофизических свойств: коэффициента температуропроводности – а (м 2 /с), удельной теплоемкости – с (кДж/(кг К) и плотности ρ (кг/м 3)

Дифференциальное уравнение движения:

∂ω/ ∂τ = gβ – 1/ρ ( ρ) + ν 2 ω. 2.22

Дифференциальное уравнение сплошности:

∂ω х / ∂х + ∂ω у / ∂у + ∂ω z / ∂z = 0 или div = 0 2.23

Приведенные дифференциальные уравнения конвективного теплообмена 2.19 – 2.22 описывают бесчисленное множество процессов. Чтобы решить конкретную задачу, к приведенным уравнениям следует присоединить условия однозначности. Условия однозначности дают математическое описание частных случаев. Условия однозначности состоят:

1)из геометрических условий, характеризующих форму и размеры тела или системы, в которой протекает процесс;

2) физических условий, характеризующих физические свойства среды;

3) граничных условий, определяющих особенности протекания процесса на границах жидкой среды;

4) временных или начальных условий, характеризующих особенности процесса в начальный момент времени; для стационарных процессов эти условия отпадают.

Решение приведенных систем дифференциальных уравнений и условий однозначности с большим количеством переменных получается сложным. Поэтому большое значение приобретает экспериментальный путь исследования и применение теории подобия.

В основе теории подобия лежат три теоремы.

Первая терема подобия: у подобных явлений числа подобия численно одинаковы.

Вторая теорема подобия: если физическое явление описывается системой дифференциальных уравнений, то всегда существует возможность представить их в виде уравнений подобия.

Третья теорема подобия: подобны те явления, условия однозначности которых подобны, и числа подобия, составленные из условий однозначности, численно одинаковы.

Сущность теории подобия состоит в том, что размерные физические величины, влияющие на конвективный теплообмен, объединяются в безразмерные комплексы, причем так, что число комплексов меньше числа величин, из которых составлены эти комплексы. Комплексам или числам подобия присваиваются имена ученых, внесших большой вклад в исследование процессов теплопереноса и гидродинамики

Полученные безразмерные комплексы рассматриваются как новые переменные. Они отражают не только влияние одиночных факторов, но и их совокупности, что упрощает описание исследуемого процесса. Теория подобия является теоретической базой эксперимента, облегчает анализ процессов. Рассмотрим применение теории подобия для исследования конвективных процессов теплоотдачи.

Из формулы 2.17 видно, интенсивность конвективного теплообмена характеризуется коэффициентом теплоотдачи, который зависит, в частности, от определяющего размера, площади теплообменной поверхности, температуропроводности, теплопроводности, температурного напора, скорости движения жидкости, коэффициента кинематической вязкости и т. д.

Из этих величин составлены безразмерные комплексы – числа подобия (критерии подобия).

число Нуссельта Nu = αℓ / λ 2.24

число Рейнольдса Re = ωℓ / ν 2.25

число Грасгофа Gr = g β Δt ℓ 3 / ν 2 2.26

число Прандтля Рr = ν /а 2.27

Число Нуссельта – определяемое число, т.к. в него входит искомый коэффициент теплоотдачи. Числа Рейнольдса, Грасгофа, Прандтля – определяющие. Они состоят из величин, известных до решения задачи. В общем виде

Nu= ƒ (Rе, Gr, Рr) 2.28

Для решения задач приведенное уравнение записывается в степенном виде:

Nu = c Rе m Gr n Рr r 2.29

Различают естественное (свободное) и вынужденное течение жидкости.

Естественная конвекция возникает за счет разности плотностей холодных и горячих частиц жидкости около поверхности нагрева. Интенсивность теплового расширения характеризуется температурным коэффициентом объемного расширения β Для газов, которые в большинстве случаев можно считать идеальными, коэффициент объемного расширения определяется равенством

При естественной конвекции уравнение 2.28 упрощается:

Nu= с (Gr, Рr) n 2.31

Вынужденная конвекция создается внешним источником (насосом, вентилятором). Для вынужденной конвекции уравнение 2.28 имеет вид:

Nu = с Rе m Pr n 2.32

Задачей эксперимента является определение конкретного вида функциональной связи в уравнении подобия, т.е. следует найти числовые значения коэффициентов, показателей степеней и т.д.

Nu ℓ /λ 2.33

Как показали экспериментальные исследования, режим течения определяется скоростью потока.

О. Рейнольдс опытным путем установил, что при движении жидкости встречаются два вида потока, подчиняющимся различным законам. В одном виде потока все частицы движутся только по параллельным траекториям и движение длительно совпадает с направлением всего потока. Жидкость движется спокойно, без пульсаций. Такое движение названо ламинарным. При ламинарном течении в трубе число Рейнольдса менее 2300.

Во втором типе потока происходит непрерывное перемешивание всех слоев жидкости. Поток представляет беспорядочную массу хаотически движущихся частиц. Такой тип потока называется турбулентным. При турбулентном течении число Рейнольдса более 10 4 .

При числах Рейнольдса более 2000, но менее 1 . 10 4 движение жидкости нестабильное. Режим течения называется переходным.

Теоретическое исследование задач конвективного теплообмена основано на теории пограничного слоя, разработанной Л. Прандтлем.

Введены понятия теплового и динамического пограничных слоев.

Если температуры стенки и жидкости неодинаковы, то вблизи стенки образуется тепловой пограничный слой, в котором происходит изменение температуры. Вне пограничного слоя температура жидкости одинакова и равна температуре потока.

Тонкий пограничный слой жидкости вблизи поверхности, в котором происходит изменение скорости от значения скорости невозмущенного потока вдали от стенки до нуля непосредственно на стенке, называется динамическим пограничным слоем.

Рис.2.4 Распределение температуры и скорости в тепловом

и динамическом пограничном слое

С увеличением вязкости толщина динамического слоя увеличивается, с увеличением скорости потока толщина динамического слоя уменьшается. Течение в динамическом слое может быть как ламинарным, так и турбулентным и определяется числом Рейнольдса.

Толщины теплового и пограничного слоев могут не совпадать. Соотношение толщин динамического и теплового пограничных слоев определяется безразмерным числом Прандтля. Для вязких жидкостей, например, масел, Рr>1. Для вязких жидкостей, например, масел толщина динамического пограничного слоя больше толщины теплового пограничного слоя. Для газов Рr ≈ 1и толщины слоев приблизительно одинаковы. Для жидких металлов Рr < 1, толщина теплового пограничного слоя больше толщины динамического пограничного слоя.

Если движение внутри теплового пограничного слоя ламинарное, то теплообмен осуществляется теплопроводностью. С увеличением скорости в пограничном слое и появлением турбулентности следует учитывать интенсивность перемешивания жидкости.

В процессе продольного обтекания какого-либо тела безграничным потоком жидкости с постоянной скоростью течения в непосредственной близости от поверхности тела скорость течения должна падать до нуля.

При решении задач конвективного теплообмена следует обращать внимание на то, какая температура для данного уравнения подобия принимается за определяющую, т.к. физические параметры жидкостей и газов изменяются с изменением температуры.

Для простейших случаев, когда температура потока изменяется в небольших пределах, среднюю температуру жидкости можно определить как среднеарифметическую у входа в канал t 1 и выхода из канала t 2: t ж = 0,5 (t 1 – t 2).

Для более точных расчетов пользуются формулой

t ж = 0, 5 (t 1 – t 2) (∆t б - ∆t м)/ ℓn (∆t б /∆t м), 2.34

где ∆ t б и ∆ tм – температурные напоры в начальном и конечном сечении трубы или канала.

В некоторые числа подобия входит линейный размер, причем, берут тот размер, которым определяется развитие процесса. Для труб определяющим размером при течении жидкости внутри трубы является внутренний диаметр, при внешнем обтекании – наружный диаметр трубы, для каналов некруглого сечения - принимается эквивалентный диаметр dэкв = 4F / S, где F – площадь поперечного сечения канала, S – полный (смоченный) периметр канала. При обтекании плиты за определяющий размер принимается ее длина по направлению движения потока.

Следует обратить внимание на аналогию процессов тепло и массопереноса.

Рассмотренное выше уравнение теплопроводности – закон Фурье (уравнение 2.3) аналогичен основному закону процесса диффузии (молекулярного переноса массы) – закону Фика.

m = - D grad c i 2.35

где m плотность потока массы, кг / (м 2 с); D – коэффициент диффузии, м 2 / с; с i – концентрация массы рассматриваемого компонента в единице объема вещества, кг/м 3 . Сопоставим эти законы:

Q = -λgrad t F m = - D grad c i F

Одинаковые математические записи законов Фурье и Фика отражают аналогию переноса массы и теплоты. Например, в газах носители массы и теплоты одни и те же: Каждая молекула вместе с собственной массой переносит и энергию. Вблизи поверхности образуется тонкий пограничный слой, в котором концентрация вещества будет изменяться от состояния насыщения у поверхности до концентрации вещества в потоке.

Уравнение массоотдачи в направлении у (поперек потока) имеет вид

β = (D / c 0 - c ж) (∂с / ∂у) 2.36

Уравнение переноса массы диффузией и концентрацией

ω х (∂с /∂х) + ω у (∂с/∂у) = D [(∂ 2 c/∂х 2) + (∂ 2 с/∂у 2) 2.37

Уравнения сплошности и движения (2.20 и 2.22) останутся без изменения.

Аналогичны по записи числа Nu и Рr

Nu =αℓ/λ Nu д = βℓ/ D – иногда его называют числом Шервуда 2.38

Рr = ν/ а Рr д = ν/ D - иногда его называют числом Шмитда 2.39

Nu = Nu д; Рr = Рr д 2.40

Одни и те же безразмерные уравнения при одних и тех же граничных условиях дадут одни и те же решения, пригодные для описания процессов как теплоодачи, так и массоодачи.

βℓ / D = α ℓ/λ , тогда 2.41

β / D = α / λ2.42

При больших перепадах температур или концентраций аналогия процессов тепло и массообмена нарушается, т.к. зависимости теплофизических свойств от температуры и концентрации неодинаковы.

ВИДЫ КОНВЕКТИВНОГО ТЕПЛООБМЕНА. УРАВНЕНИЕ И КОЭФФИЦИЕНТ КОНВЕКТИВНОГО ТЕПЛООБМЕНА (ТЕПЛООТДАЧИ)

Различают два вида конвективного теплообмена в соответствии с различной природой сил, вызывающих движение (конвекцию) жидкости.

Движение жидкости, вызываемое перепадом давления (напором), создаваемым каким-либо внешним побудителем (насосом, вентилятором и т.п.), называется вынужденной конвекцией.

В объеме жидкости с неоднородным температурным полем и, следовательно, с неоднородным полем плотности (с увеличением температуры плотность уменьшается) возникают подъемные (архимедовы) силы - более нагретая жидкость поднимается вверх. Такое движение называется естественной конвекцией , в данном случае гравитационной естественной конвекцией. Возможна естественная конвекция также под действием других массовых сил, например центробежных и т.п. Но на практике преимущественно встречается гравитационная конвекция под действием архимедовых сил.

Таким образом, конвективный теплообмен подразделяется на теплообмен при вынужденной конвекции и теплообмен при естественной конвекции.

В условиях теплообмена силы, вызывающие гравитационную естественную конвекцию, присутствуют всегда. Возможны режимы, когда вклад вынужденной и естественной конвекции в теплоотдачу будет соизмерим. В этом случае имеет место теплообмен при смешанной конвекции.

На рис. 13.2 и 13.3 рассмотрены схемы двух характерных случаев. На рис. 13.2 показана схема процесса при обтекании поверхности с температурой t c вынужденным потоком с температурой / ж > / с и ско

Рис. 13.2.

Рис. 13.3.

ростью w. Поскольку температура стенки меньше, тепловой поток q n направлен в сторону стенки. На рис. 13.3 показана вертикальная стенка с температурой t c > t ж. Вдали от стенки среда неподвижна.

Слои жидкости около стенки нагреваются и под действием возникающих архимедовых сил поднимаются вверх. Тепловой поток q n направлен от стенки к жидкости, имеющей меньшую температуру. Если температура стенки меньше температуры жидкости (t c

Для расчета теплового потока конвективного теплообмена была предложена достаточно простая формула, называемая уравнением конвективного теплообмена или теплоотдачи :

где t c и? ж - температура поверхности стенки и жидкости соответственно.

Принято, что тепловой поток конвективного теплообмена пропорционален разности температур поверхности стенки и жидкости (температурному напору). Коэффициент пропорциональности а с размерностью Вт/ (м 2 К) назван коэффициентом конвективного теплообмена или коэффициентом теплоотдачи.

Уравнение в виде (13.7) было предложено И. Ньютоном в 1701 г., и через некоторое время к подобному результату при исследовании теплообмена пришел Г.В. Рихман. Поэтому эта зависимость была названа законом конвективного теплообмена Ньютона-Рихмана.

Коэффициент теплоотдачи характеризует интенсивность переноса теплоты в конвективном теплообмене и численно равен плотности теплового потока при разности температур t c - / ж (температурном напоре)1 К.

Уравнение (13.7) лишь формально упрощает расчет конвективного теплообмена. Сложность расчета перенесена на определение коэффициента теплоотдачи, поскольку он не является физическим свойством вещества, а зависит от многих факторов процесса. Исходя из физических представлений можно сказать, что коэффициент теплоотдачи зависит от физических свойств жидкости (коэффициента теплопроводности X, теплоемкости с, плотности р, динамического коэффициента вязкости р, коэффициента температурного объемного расширения (3), скорости потока жидкости w, разности температур жидкости и стенки t c - / ж, формы и размеров поверхности теплоотдачи, ориентации ее относительно направления потока жидкости и силы тяжести. Разность температур и коэффициент объемного расширения предопределяют разность плотностей и величину подъемных сил, влияющих на развитие естественной конвекции.

Таким образом, коэффициент теплоотдачи зависит от ряда свойственных процессу факторов, т.е., по существу, является функцией процесса:

где L - характерный размер поверхности теплообмена; Ф - символизирует зависимость от формы теплоотдающей поверхности и ее ориентации относительно направления потока жидкости или относительно направления силы тяжести.

Для определения ос разработана теория конвективного теплообмена и соответствующие методы расчета, основные положения которых рассматриваются в гл. 15.

Закон охлаждения Ньютона устанавливает, что скорость теплопередачи при покидании поверхности при температуре Ts в окружающие газ или жидкость при температуре Tf дается уравнением:

Qконвекции = h A (Ts - Tf )

где коэффициент конвективной теплопередачи h имеет размерность Вт/м 2 . K или БТЕ/с.дюйм 2 .F. Коэффициент h не является термодинамическим свойством. Он представляет собой упрощенное соотношение для состояния газа или жидкости и условий на поток и потому часто называется потоковым свойством.

Конвекция связана с концепцией пограничного слоя, которым является тонкий слой перехода между поверхностью, считающейся примыкающей к стационарным, и потоком жидкости ли газа по соседству. Это проиллюстрировано на следующем рисунке для потока поверх плоской пластины.

Здесь u(x,y) – скорость по направлению x. Область поверх внешнего края слоя газа или жидкости, определяемого как 99% свободной скорости потока, называется толщиной пограничного слоя жидкости или газа d (x).

Похожий эскиз можно выполнить для температурного переноса от температуры поверхности к температуре окружения. Схематика изменения температуры дана на следующем рисунке. Отметим, что толщина термического пограничного слоя не обязательно должна быть той же, что у жидкости или газа. Свойства жидкости ли газа, которые увязываются в число Прандтля , определяют относительную величину двух типов пограничных слоев. Число Прандтля (Pr), равное 1, вызывало бы одинаково поведение для обоих пограничных слоев.

Актуальный механизм теплопередачи через пограничный слой принимается как проводимость по направлению оси y через стационарную жидкость рядом со стенкой, равная скорости конвекции от пограничного слоя к самой жидкости ли газу. Это можно записать так:

h A (Ts - Tf ) = - k A (dT/dy)s

Таким образом, коэффициент конвекции для заданной ситуации может быть оценен измерением скорости теплопереноса и разницы температур или измерением температурного градиента, примыкающего к поверхности, и разницы температур.

Измерение температурного градиента поперек пограничного слоя требует высокой точности и обычно проводится в научно-исследовательских лабораториях. Во многих учебниках приводятся табличные данные коэффициентов конвективной теплопередачи для различных конфигураций.

Следующая таблица показывает некоторые типичные значения для коэффициента конвективной теплопередачи:

Коэффициент теплопередачи h (Вт/м 2 . K)

Воздух (естественная конвекция)

Воздух/перегретый пар (принудительная конвекция)

Масло (принудительная конвекция)

Вода (принудительная конвекция)

Вода (кипящая)

Пар (конденсирующийся)

1. Основные понятия конвективного теплообмена:

конвекция, конвективный теплообмен, коэффициент теплоотдачи, термическое сопротивление теплоотдачи, сущность процессов конвективного теплообмена

2. Циклонные топки

3. Газообразное топливо


1. Основные понятия конвективного теплообмена

Конвекция, конвективный теплообмен, коэффициент теплоотдачи, термическое сопротивление теплоотдачи, сущность процессов конвективного теплообмена.

Конвекцией называют процесс переноса теплоты при перемещении макрочастиц (газа или жидкости). Поэтому конвекция возможна лишь в среде, частицы которой могут легко перемещаться.

Конвективным называют теплообмен , обусловленный совместным действием конвективного и молекулярного переноса теплоты. Другими словами, конвективный теплообмен осуществляется одновременно двумя способами: конвекцией и теплопроводностью.

Конвективный теплообмен между движущейся средой и поверхностью ее раздела с другой средой (твердым телом, жидкостью или газом) называют теплоотдачей.

Главной задачей теории конвективной теплоотдачи является определение количества теплоты, которое проходит через поверхность твердого тела, омываемого потоком. Результирующий поток теплоты всегда направлен в сторону уменьшения температуры,

При практических расчетах теплоотдачи пользуются законом Ньютона:

Q= б F(t ж -tcт) (15-1)

т. е. тепловой поток Q от жидкости к стенке или от стенки к жидкости пропорционален поверхности F, участвующей в теплообмене, и температурному напору (t ж - t ст, где t ст - температура поверхности стенки, а - температура среды, омывающей поверхность стенки. Коэффициент пропорциональности б, учитывающий конкретные условия теплообмена между жидкостью и поверхностью тела, называют коэффициентом теплоотдачи.

Приняв по формуле (15-1) F=1м², а ф =1 сек, получим плотность теплового потока в ваттах на квадратный метр;

q= б (t ж -tcт) (15-2)

Величину 1/б обратную коэффициенту теплоотдачи, называют термическим сопротивлением теплоотдачи.

б = q: (t ж -tcт) (15-3)

Из равенства (15-3) следует, что коэффициент теплоотдачи, а есть плотность теплового потока q , отнесенная к разности температур поверхности тела и окружающей среды.

При температурном напоре, равном 1 ° (t ж -tcт= 1 °), коэффициент теплоотдачи численно равен плотности теплового потока б = q

Теплоотдача является достаточно сложным процессом и коэффициент теплоотдачи, а зависит от многих факторов, основными из которых являются:

а) причина возникновения течения жидкости;

б) режим течения жидкости (ламинарный или турбулентный);

в) физические свойства жидкости;

г) форма и размеры теплоотдающей поверхности.

По причине возникновения движения жидкости, бывает свободным и вынужденным.

Свободное движение (тепловое) возникает в неравномерно прогрето» жидкости. Возникающая при этом разность температур приводит к разности плотностей и всплыванию менее плотных (более легких), элементов жидкости, что вызывает движение. В этом случае свободное движение, называют естественной или тепловой конвекцией . Так, например, теплообмен между внутренним и внешним стеклами оконной рамы осуществляется естественной конвекцией (при условии, что расстояние между стеклами достаточно для циркуляции воздуха).

2. Циклонные топки


Циклонные топки предназначены для сжигания дробленого угля. Схема такой топки представлена на рис. 19-8. Дробленый уголь с первичным воздухом подается через штуцер I в циклонную камеру 2. В нее же тангенциально подается вторичный воздух, который поступает через штуцер 3 со скоростью около 100 м/сек, В камере создается вращающийся поток продуктов горения, отбрасывающий крупные частички топлива на ее стены, где они под действием горячих воздушных потоков газифицируются.

Из циклонной камеры продукты горения с недогоревшими частицами топлива поступают в камеру дожигания 4. Шлак из циклонной камеры через камеру дожигания поступает в шлаковую ванну, где он гранулируется водой.

Достоинствами циклонных топок являются:

1)возможность горения топлива с небольшим избытком воздуха1,05-1,1, что снижает потери теплоты с отходящими газами;

2)повышенная удельная тепловая мощность топочного объема;

3)возможность работы на дробленом угле (вместо пылевидного);

4)улавливание золы топлива в топке до 80-90%.

К недостаткам циклонной топки относятся:

1) трудность сжигания высоковлажных углей и углей с малым выходом летучих веществ;

2) повышенный расход энергии на дутьё.

3. Газообразное топливо

Естественное. Природный (естественный) газ встречается во многих местах земного шара.

Запасы газового топлива в некоторых месторождениях достигают сотен миллиардов кубических метров. Его добывают не только из специальных газовых скважин, но и как побочный продукт при добыче нефти. Такой природный газ называют попутным нефтяным газом.

Основной составной частью природного газа является метан СН 4 .

Природный газ обладает высокой теплотой сгорания. Его используют в качестве топлива для промышленных печей, автотранспорта, а также для бытовых нужд.

Часть природного газа подвергают химической переработке для получения жидкого топлива, технологического газа, химического сырья.

В СССР крупные газоносные районы расположены в Поволжье, на Северном Кавказе, Украине, в Зауралье и др.

Искусственное. Искусственное газовое горючее (коксовый, мазутный, генераторный газы) получают при переработке нефти и естественного твердого топлива, а также в качестве побочного продукта в сырья.. Газообразное топливо.х углей и углей с малым выходом летучих веществ;лообмен, коэффициент теплоотдачи, термическое снекоторых отраслях промышленного производства, как, например, в доменном.

Доменный газ образуется в доменных печах при выплавке чугуна. Примерно половина полученного газа расходуется на собственные нужды доменной печи. Вторая половина газа может быть использована в качестве топлива.


Задача

Условие: Какое количество теплоты необходимо подвести к 1кг. воздуха с t =20С, чтобы его объем при постоянном давлении увеличился в два раза.

Вопрос: Определить температуру воздуха в конце процесса, теплоемкость воздуха –постоянная.

1) t = 25C – согласно IS- диаграммы.

2) Т = t +273=298К

3) Т = t +273=293К

Объем конечный вычислить так:

Vк = Vн х 2 = 0,058х2=0,116м²

Определить количество теплоты по формуле:

Q = mc(Т -Т) =1,5х1,005(298-293)= =7,537

где m-масса кг. - по заданию 1.5кг, с-теплоемкость кДж (кгС) из таблицы- 1,005кДж/кг.

Ответ: необходимо подвести теплоту в количестве Q =7,537,температура воздуха в конце процесса составит 25С.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!