Справочник по проектированию мазутных хозяйств тепловых электростанций. Проект тэц с разработкой инвариантных сар

Установка газовых котлов должна выполняться в соответствии с требованиями нормативных документов. Сами жильцы, владельцы здания не могут установить газовое оборудование. Оно должно устанавливаться в соответствии с проектом, который может быть разработан только организацией имеющей на это лицензию.

Устанавливаются (подключаются) газовые котлы также специалистами лицензированной организации. Торгующие фирмы, как правило, имеют разрешительную документацию на послепродажное обслуживание автоматизированного газового оборудования, зачастую на проектирование и монтаж. Поэтому удобно воспользоваться услугами одной организации.

Далее в ознакомительных целях приведены основные требования к местам, где могут быть установлены котлы, работающие на природном газе (подключенные к газовой магистрали). Но строительство подобных сооружений должно вестись в соответствии с проектом и требованиями нормативов.

Разные требования к котлам с закрытой и открытой камерой сгорания

Все котлы подразделяются по типу камеры сгорания и способу ее проветривания. Закрытая камера сгорания проветривается принудительно с помощью встроенного в котел вентилятора.

Это позволяет обходиться без высокого дымохода, а только лишь горизонтальным участком трубы и забирать воздух для горелки с улицы через воздуховод или тот же дымоход (коаксиальный дымоход).

Поэтому требования для места установки одного настенного маломощного (до 30 кВт) котла с закрытой камерой сгорания не столь жесткие. Он может устанавливаться в сухом подсобном помещении, в том числе и на кухне.

Установка газового оборудования в жилых комнатах запрещена, в ванной комнате запрещена

Другое дело котлы с открытой горелкой. Работают они на высокий дымоход (выше конька крыши), создающий естественную тягу через камеру сгорания. А воздух забирают непосредственно из помещения.

Наличие такой камеры сгорания влечет основное ограничение — эти котлы должны устанавливаться в отдельных специально выделенных для них помещения – топочных (котельных).

Где может располагаться топочная (котельная)

Помещение для установки котлов может располагаться на любом этаже частного дома, в том числе и в цокольном и в подвальном, а также в чердачном помещении и на крыше.

Т.е. под топочную можно приспособить помещение в пределах дома имеющее размеры не менее нормативных, двери из которого ведут на улицу. А также оборудованное окном и вентиляционной решеткой определенной площади и др.
Топочная может располагаться и в отдельно стоящем здании.

Что и как можно размещать в топочной

Свободный проход с фронтальной стороны установленного газового оборудования должен быть шириной не менее 1 метра.
В топочной может размещаться до 4 единиц отопительного газового оборудования с закрытыми камерами сгорания, но суммарной мощностью не более 200 кВт.

Размеры топочной

Высота потолков в топочной (котельной) — не менее 2,2 метра, площадь пола не менее 4 м кв. на один котел.
Но объем топочной регламентируется в зависимости от мощности установленного газового оборудования:
— до 30 кВт включительно – не менее 7,5 м куб;
— 30 – 60 кВт включително – не менее 13,5 м куб;
— 60 – 200 кВт – не менее 15 м куб.

Чем оборудуется топочная

Топочная оборудуется дверьми на улицу шириной не менее 0,8 метра, а также окном для естественного освещения площадью не менее 0,3 м кв. на 10 м куб. топочной.

Топочная снабжается однофазным электроснабжением 220 В, выполненным в соответствии с ПУЭ, а также водопроводом, соединенным с отоплением и горячим водоснабжением, а также канализацией, которая может принять воду при аварийном затоплении, в том числе и в объемах бойлера и буферной емкости.

Не допускается наличие в котельной горючих, пожароопасных материалов, в том числе отделочных на стенах.
Газовая магистраль в пределах топочной должна быть оборудована запорным устройством по одному на каждый котел.

Как должна проветриваться топочная (котельная)

Топочная должна оборудоваться вытяжной вентиляцией, можно соединенной с вентиляционной системой всего здания.
Свежий воздух к котлам может подаваться через вентиляционную решетку, которая устанавливается в нижней части двери или стены.

При этом площадь отверстий в этой решетке не должна быть меньше чем 8 см квадратных на один киловатт мощности котла. А если приток изнутри здания – не менее 30 см кв. на 1 кВт.

Дымоход

Значения минимального диаметра дымохода в зависимости от мощности котла приведены в таблице.

Но основное правило такое – площадь сечения дымохода не должна быть меньше площади выходного отверстия в котле.

В каждом дымоходе должно быть ревизионное отверстие, расположенное ниже входного отверстия дымохода не менее, чем на 25см.

Для устойчивой работы дымоход должен быть выше конька крыши. Также ствол дымохода (вертикальная часть) должны быть абсолютно прямолинейным.

Данные сведения приведены исключительно в ознакомительных целях для формирования общего представления о топочных в частных домах. При строительстве помещения для размещения газового оборудования необходимо руководствоваться проектными решениями и требованиями нормативных документов.

При конструировании топочной камеры ста­вится ряд условий, которым она должна удовле­творять. Во-первых, топочная камера должна обес­печить в пределах ее объема наиболее полное сжигание топлива, так как за пределами топки горение топлива практически невозможно (допу­стимая неполнота сгорания топлива обоснована в гл. 6). Во-вторых, в пределах топочной каме­ры должно произойти охлаждение продуктов сго­рания за счет отвода теплоты к экранам до эко­номически целесообразной и безопасной темпера­туры. на выходе из топочной камеры по услови­ям шлакования или перегрева металла труб. В-тре­тьих, аэродинамика газовых потоков в объеме то­почной камеры должна исключать явления шлако­вания стен или перегрева металла экранов в от­дельных зонах топки, что достигается выбором ти­па горелок и их размещением по стенам топоч­ной камеры.

Геометрически топочная камера характеризу­ется линейными размерами: шириной фронта ат, глубиной 6Т и высотой hT (рис. 5.2), размеры ко­торых определяются тепловой мощностью топки, Рис. 5.2. Основные раз - тепловыми и физико-химическими характеристика - меры топочной камеры, ми топлива. Произведение /т = ат6т, м2, есть сече­ние топочной камеры, через которое с достаточно большой скоростью (7-12 м/с) проходят раскаленные топочные газы.

Ширина фронта тонки паровых котлов электростанций составляет аг = 9, 5 - г - 31 м и зависит от вида сжигаемого топлива, тепловой мощности
(паропроизводительности) парового . С увеличением мощности паро­вого котла размер ат растет, но не пропорционально росту мощности, ха­рактеризуя таким образом увеличение тепловых напряжений сечения топки и скорости газов в ней. Оценочно ширину фронта ат, м, можно определить по формуле

Шф£)0"5, (5.1)

Где D - паропроизводительность котла, кг/с; гпф - числовой коэффициент, изменяющийся от 1,1 до 1,4 с ростом паропроизводительности.

Глубина топочной камеры составляет 6Т = б - f - 10,5 м и определяется размещением горелок на стенах топочной камеры и обеспечением свободно­го развития факела в сечении топки так, чтобы высокотемпературные языки факела не оказывали давление на охлаждающие настенные экраны. Глуби­на топки возрастает до 8-10,5 м при использовании более мощных горелок с увеличенным диаметром амбразуры и при их расположении в несколько (два-три) ярусов на стенах топки.

Высота топочной камеры составляет hT = 15 - 65 м и должна обеспе­чить практически полное сгорание топлива по длине факела в пределах то­почной камеры и размещение на ее стенах требуемой поверхности экранов, необходимых для охлаждения продуктов сгорания до заданной температу­ры. По условиям сгорания топлива необходимая высота топки может быть установлена из выражения

Кор = ^гтпреб, (5.2)

Где Wr - средняя скорость газов в сечении топки, м/с; тпреб - время пре­бывания единичного объема газа в топке, с. При этом необходимо, чтобы тпреб ^ Тгор, где тГОр - время полного сгорания наиболее крупных фракций топлива, с.

Основной тепловой характеристикой топочных устройств паровых кот­лов является тепловая мощность топки, кВт:

Вк0т = Вк(СЗЇ + 0дОП+СЗг. в), (5.3)

Характеризующая количество теплоты, выделяющейся в топке при сжига­нии расхода топлива Вк, кг/с, с теплотой его сгорания кДж/кг и с учетом дополнительных источников тепловыделения (Здогъ а также теплоты посту­пающего в топку горячего воздуха QrB (см. гл. 6). На уровне расположения горелок выделяется наибольшее количество теплоты, здесь расположено ядро факела и резко растет температура топочной среды. Если отнести все тепловыделение в растянутой по высоте топки зоне горения к сечению топ­ки на уровне горелок, то получим важную расчетную характеристику - тепловое напряжение сечения топочной камеры.

Максимально допустимые значения qj нормируются в зависимости от вида сжигаемого топлива, расположения и типа горелок и составля­ют от 2 300 кВт/м2 - для углей, обладающих повышенными шлакующими свойствами, до 6 400 кВт/м2 - для качественных углей с высокими темпе­ратурами плавления золы. С ростом значения qj увеличивается температура факела в топке, в том числе вблизи настенных экранов, заметно увеличива­ется тепловой поток излучения на них. Ограничение значений qj определя­ется для твердых топлив исключением интенсивного процесса шлакования настенных экранов, а для газа и мазута - предельно допустимым ростом температуры металла экранных труб.

Характеристикой, определяющей уровень энерговыделения в топочном устройстве, является допустимое тепловое напряжение топочного объема, qv, кВт/м3:

Где VT - объем топочной камеры, м3.

Значения допустимых тепловых напряжений топочного объема также нормируются. Они изменяются от 140 - г 180 кВт/м3 при сжигании углей с твердым шлакоудалением до 180 - f - 210 кВт/м3 при жидком шлакоудале - нии. Величина qy прямо связана со средним временем пребывания газов в топочной камере. Это следует из нижеприведенных соотношений. Время пребывания единичного объема в топке определяется отношением факти­ческого объема топки с подъемным движением газов к секундному расход­ному объему газов:

273£ТУГ "

Тїіреб - Т7 = -------- ------ р. О)

Кек BKQ№aTTr

Где - усредненная доля сечения топки, имеющая подъемное движение газов; значение £т = 0,75 - г 0,85; - удельный приведенный объем газов, получающийся при горении топлива на единицу (1 МДж) тепловыделения, м3/МДж; значение = 0, 3 - f 0, 35 м3/МДж - соответственно крайние значения при сжигании природного газа и сильновлажных бурых углей; Ту - средняя температура газов в топочном объеме, °К.

С учетом выражения (5.5) значение тпрсб в (5.6) можно представить следующим образом:

Где тТ - комплекс значений постоянных величин.

Как следует из (5.7), с увели­чением теплового напряжения qy (увеличением объемного расхода газов) время пребывания газов в топочной камере уменьшается (рис. 5.3). Условию Тпреб = Тгор со­ответствует максимально допусти­мое значение qy, а этому значе­нию по (5.5) отвечает минимально допустимый объем топочной каме­ры кмин.

Вместе с тем, как это указа­но выше, экранные поверхности то­почной камеры должны обеспечить охлаждение продуктов сгорания до заданной температуры на выходе из топки что достигается опреде­лением необходимых размеров стен и, следовательно объема топочной камеры. Поэтому нужно сопоставить минимальный объем топки V^Mmi из условия сгорания топлива и необходимый объем топки из условия охла­ждения газов до заданной температуры

Как правило, Утохя > VTmm, поэтому высота топочной камеры опреде­ляется условиями охлаждения газов. Во многих случаях эта необходимая высота топки существенно превосходит ее минимальную величину, соот­ветствующую V7",H, особенно при сжигании углей с повышенным внешним балластом, что ведет к утяжелению и удорожанию конструкции котла.

Увеличения поверхностей охлаждения без изменения геометриче­ских размеров топки можно достичь применением двусветных экранов (см. рис. 2.5), расположенных внутри топочного объема. В топочных ка­мерах мощных паровых котлов при сильно развитой ширине фронта топки применение такого экрана делает сечение каждой секции в плане близ­ким к квадрату, что значительно лучше для организации сжигания топлива и получения более равномерного поля температур газов и тепловых напря­жений экранов. Однако такой экран, в отличие от настенного, воспринимает интенсивный тепловой поток с обеих сторон (отсюда и название - двусвет­ный) и отличается более высокими тепловыми напряжениями, что требует тщательного обеспечения охлаждения металла труб.

Тепловосприятие топочных экранов, полученное излучением факе­ла QJU кДж/кг, можно установить из теплового баланса топки, как разность между удельным полным тепловыделением в зоне ядра факела на уровне расположения горелок без учета отдачи теплоты к экранам, QT, кДж/кг,
и удельной теплотой (энтальпией) газов на выходе из топки Н" при от­даче (потере) небольшой части теплоты во вне через теплоизолирующие стены Опот:

Qn = Qr - Н" - Qhot = (QT ~ , (5.8)

Где (/? = (5л/(<2л + <2пот) - ДОЛЯ сохранения теплоты в топке (см. п. 6.3.4). Ес­ли отнести значение Qn к единице поверхности экрана, то получим среднее тепловое напряжение поверхности нагрева, qn, кВт/м2, характеризующее интенсивность тепловой работы металла труб экранов:

Где FC3T - поверхность стен топки, закрытая экранами, м2.

Изобретение относится к конструкции топочных камер котлов при сжигании жидкого и газообразного топлива. Конструкция состоит из внешнего ограждения, установленных внутри топочного объема уголковых или плоских стабилизаторов пламени. Внутри зон стабилизации устанавливаются трубы подвода вторичного/третичного воздуха. Вдоль внешнего ограждения установлены отражатели. Таким образом в процесс организации сжигания топлива вовлечены дополнительные поверхности нагрева, устанавливаемые внутри топки. Они используются не только в качестве поверхностей охлаждения, но и в качестве элементов, организующих сам процесс горения. Изобретение позволяет уменьшить габариты топочной камеры. 3 з.п. ф-лы, 3 ил.

Изобретение относится к конструкции топочных камер котлов при сжигании жидкого и газообразного топлива. Известны конструкции топочных камер котлов, выполненных из ограждающих и ширмовых поверхностей нагрева (2). Ширмовые или двухсветные экраны вводятся в объем топочной камеры, увеличивая теплоотвод на единицу длины или высоты топочной камеры, то есть указанные поверхности нагрева выполняют одну функцию - отвод тепла. Как известно, топочная камера современного котла выполняет две основные функции: сжигание топлива и охлаждение газов до определенной температуры на выходе из топки. Задачей изобретения является снижение объема и уменьшение габаритов топочной камеры путем вовлечения в процесс организации сжигания топлива устанавливаемых внутри топки дополнительных поверхностей нагрева, т.е. использование их не только в качестве поверхностей охлаждения, но и в качестве элементов, организующих сам процесс горения, т. е. выполняющих не одну, а несколько функций. Указанная задача достигается тем, что у топочной камеры для сжигания жидкого и газообразного топлива, состоящей из ограждающих и ширмовых (двухсветных) поверхностей нагрева и горелочного устройства, ширмовые поверхности нагрева располагают в виде уголковых или плоских стабилизаторов пламени, часть плоских стабилизаторов устанавливают под углом к потоку, в зоне стабилизаторов пламени устанавливают воздуховоды. Внутренняя поверхность стабилизаторов утеплена путем, например, набивки торкрета на шипы. Применение уголковых и плоских стабилизаторов пламени широко применяется в камерах сгорания газотурбинных двигателей (1). Конструкция упомянутых стабилизаторов выполняет функцию организации процесса горения, но не участвует в теплоотводе от газов. На фиг. 1 показан поперечный разрез в плане топочной камеры, на фиг. 2 - сечение А-А на фиг. 1, на фиг. 3 - узел Б на фиг. 1. Конструкция состоит из внешнего ограждения 1, установленных внутри топочного объема уголковых 2 или плоских 3 стабилизаторов пламени. Внутри зон стабилизации устанавливаются трубы подвода вторичного (третичного) воздуха 4. Вдоль внешнего ограждения 1 установлены отражатели потока 5. Работает конструкция следующим образом. Топливо на входе в камеру предварительно смешивается с первичным воздухом при избытке последнего меньше 1. Вторичный и третичный воздух для дожигания бедной смеси подводят далее по ходу газа непосредственно в зоны стабилизации пламени, доводя избыток воздуха до расчетного по условиям минимума химического и механического недожога. Сжигание топлива осуществляется по тракту с интенсивным отводом тепла поверхностями нагрева, которыми являются и сами стабилизаторы. Отвод тепла при сжигании эквивалентен, по эффекту снижения температуры горения, осуществлению рециркуляции охлажденного газа в ядро факела, что, как известно, способствует уменьшению образования окислов азота. По ходу движения горящей смеси при одновременном отводе тепла температура потока снижается, уменьшается при этом и объем газа. Для поддержания характера стабилизации на прежнем уровне угол раскрытия уголков целесообразно увеличивать 2 > 1 ; в пределе уголковый стабилизатор выраждается (при малых скоростях потока) в поперечно установленную пластину 3. На выходе потока пластины целесообразно ориентировать по повороту газа. Для отражения газа, двигающегося вдоль стен ограждения, установлены отражатели 5. Все вышесказанное позволяет организовать процесс сгорания топлива и его охлаждения в единый, что позволяет уменьшить габариты топочной камеры, особенно в длину.

Формула изобретения

1. Топочная камера котла для сжигания жидкого и газообразного топлива, состоящая из ограждающих и ширмовых поверхностей нагрева и горелочного устройства, отличающаяся тем, что ширмовые поверхности нагрева располагают в виде уголковых или плоских стабилизаторов пламени. 2. Камера по п. 1, отличающаяся тем, что часть плоских стабилизаторов устанавливают под углом к потолку. 3. Камера по п.1, отличающаяся тем, что в зоне стабилизаторов пламени устанавливают воздуховоды. 4. Камера по п.1, отличающаяся тем, что внутренняя поверхность стабилизаторов утеплена путем, например, набивки торкрета на шипы.

При поверочном расчете топки по чертежам необходимо определить: объем топочной камеры, степень ее экранирования, площадь поверхности стен и площадь лучевоспринимающих поверхностей нагрева, а также конструктивные характеристики труб экранов (диаметр труб, расстояние между осями труб).

Для определения геометрических характеристик топки составляется ее эскиз. Активный объем топочной камеры складывается из объема верхней, средней (призматической) и нижней частей топки. Для определения активного объема топки ее следует разбить на ряд элементарных геометрических фигур. Верхняя часть объема топки ограничивается потолочным перекрытием и выходным окном, перекрытым фестоном или первым рядом труб конвективной поверхности нагрева. При определении объема верхней части топки за его границы принимают потолочное перекрытие и плоскость, проходящую через оси первого ряда труб фестона или конвективной поверхности нагрева в выходном окне топки.

Нижняя часть камерных топок ограничивается подом или холодной воронкой, а слоевых -- колосниковой решеткой со слоем топлива. За границы нижней части объема камерных топок принимается под или условная горизонтальная плоскость, проходящая посередине высоты холодной воронки.

Полная площадь поверхности стен топки (F CT ) вычисляется по размерам поверхностей, ограничивающих объем топочной камеры. Для этого все поверхности, ограничивающие объем топки, разбиваются на элементарные геометрические фигуры. Площадь поверхности стен двухсветных экранов и ширм определяется как удвоенное произведение расстояния между осями крайних труб этих экранов и освещенной длины труб.

1. Определение площади ограждающих поверхностей топки

В соответствии с типовой обмуровкой топки котла ДКВР-20-13, которая показана на рисунке 4, подсчитаем площади ограждающих её поверхностей, включая поворотную камеру. Внутренняя ширина котла равна 2810 мм .

Рисунок 4. Схема топки котла ДКВР-20 и её основные размеры



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!