Объем топочной камеры котла факел г. Порядок расчета топочных камер

УСТОЙЧИВОСТЬ ЭНЕРГОСИСТЕМ

Устойчивость энергосистем - способность сохранять синхронизм между электростанциями, или, другими словами, возвращаться к установившемуся режиму после различного рода возмущений.

Связь - последовательность элементов, соединяющих две части энергосистемы. Данная последовательность может включать в себя кроме линий электропередачи трансформаторы, системы (секции) шин, коммутационные аппараты, рассматриваемые как сетевые элементы.

Сечение - совокупность таких сетевых элементов одной или нескольких связей, отключение которых приводит к полному разделению энергосистемы на две изолированные части.

Схема и режим энергосистемы

Исходя из требований к устойчивости, схемы энергосистемы подразделяются на нормальные, когда все сетевые элементы, определяющие устойчивость, находятся в работе, и ремонтные, отличающиеся от нормальной тем, что из-за отключенного состояния одного или нескольких элементов электрической сети (а при эксплуатации - также из-за отключенного состояния устройств противоаварийной автоматики) уменьшен максимально допустимый переток в каком-либо сечении.

Различают установившиеся и переходные режимы энергосистем.

К установившимся относятся режимы, которые характеризуются неизменными параметрами. Медленные изменения режима, связанные с внутрисуточными изменениями электропотребления и генераций, нерегулярными колебаниями мощностей, передаваемых по связям, работой устройств регулирования частоты и активной мощности и т. п., рассматриваются как последовательность установившихся режимов.

К переходным относятся режимы от начального возмущения до окончания вызванных им электромеханических процессов (с учетом первичного регулирования частоты энергосистемы).

При эксплуатации исходя из требований к устойчивости энергосистем перетоки мощности в сечениях в установившихся режимах подразделяются следующим образом:

нормальные (наибольший допустимый переток называется максимально допустимым);

вынужденные (наибольший допустимый переток называется аварийно допустимым).

Вынужденные перетоки допускаются для предотвращения или уменьшения ограничений потребителей, потери гидроресурсов, при необходимости строгой экономии отдельных видов энергоресурсов, неблагоприятном наложении плановых и аварийных ремонтов ос­новного оборудования электростанций и сети, а также в режимах минимума нагрузки при невозможности уменьшения перетока из-за недостаточной маневренности АЭС (кроме сечений, примыкающих к АЭС).

При проектировании перетоки мощности в сечениях при установившихся режимах подразделяются следующим образом:

нормальные (наибольший допустимый переток называется максимально допустимым),

утяжеленные.

Утяжеленным считается переток, характеризующийся неблаго приятным наложением ремонтов основного оборудования электростанций в режимах максимальных и минимальных нагрузок, если общая продолжительность существования таких режимов в течение года не превышает 10 %.

Наиболее тяжелые возмущения, которые учитываются в требованиях к устойчивости энергосистем, называемые нормативными возмущениями, подразделены на три группы: I, II и III. В состав групп входят следующие возмущения:

а) короткое замыкание (КЗ) с отключением элемента(ов) сети.

Таблица 1. Распределение по группам возмущений

Возмущения

Группы нормативных возмуще­ний в сетях с ном. напряжением, кВ

КЗ на сетевом элементе, кроме системы (секции) шин

Отключение сетевого элемента основ­ными защитами при однофазном КЗ с успешным АПВ (для сетей 330 кВ и выше - ОАПВ, 110-220 кВ - ТАПВ)

То же, но с неуспешным АПВ* 2

Отключение сетевого элемента основ­ными защитами при трехфазном КЗ с успешным и неуспешным АПВ* 2

Отключение сетевого элемента резерв ными защитами при однофазном КЗ с успешным и неуспешным АПВ* 2

Отключение сетевого элемента основ ными защитами при двухфазном КЗ на землю с неуспешным АПВ* 2

Отключение сетевого элемента действи­ем УРОВ при однофазном КЗ с отказом одного выключателя* 4

То же, но при двухфазном КЗ на землю

То же, но при трехфазном КЗ

КЗ на системе (секции) шин

Отключение СШ с однофазным КЗ, не связанное с разрывом связей между узлами сети

То же, но с разрывом связей

Примечание. Расчетная длительность КЗ принимается по верхней границе фактических значений. При проектировании должны приниматься меры, обеспечивающие при работе основной защиты длительности КЗ, не превышающие следующих значений:

Номинальное напряжение, кВ 110 220 330 500 750 1150

Время отключения КЗ, с 0,18 0,16 0,14 0,12 0,10 0,08

б) скачкообразный аварийный небаланс активной мощности по любым причинам: отключение генератора или блока генераторов с общим выключателем, крупной подстанции, вставки постоянного тока (ВПТ) или крупного потребителя и др.

Таблица 2. Распределение небалансов по группам возмущений

Кроме того, в группу III включаются следующие возмущения:

в) одновременное отключение двух ВЛ , расположенных в общем коридоре более чем на половине длины более короткой линии, в результате возмущения группы I в соответствии с табл. 1;

г) возмущения групп I и II с отключением элемента сети или генератора , которые вследствие ремонта одного из выключателей приводят к отключению другого элемента сети или генератора, подключенных к тому же распредустройству.

Коэффициент запаса устойчивости по активной мощности

Коэффициент запаса статической (апериодической) устойчивости активной мощности в сечении K р вычисляется по формуле:

где Р пр - предельный по апериодической статической устойчивости переток активной мощности в рассматриваемом сечении;

Р-переток в сечении в рассматриваемом режиме, Р > 0;

∆Р нк - амплитуда нерегулярных колебаний активной мощности в этом сечении (принимается, что под действием нерегуляр­ных колебаний переток изменяется в диапазоне Р ± ∆Рнк).

Запас устойчивости по активной мощности может быть задан также в именованных единицах, ∆Рзап = Рпр - (Р + ∆Рнк).

Значение амплитуды нерегулярных колебаний активной мощно­сти устанавливается для каждого сечения энергосистемы (в том чис­ле частичного) по данным измерений. При отсутствии таких данных расчетная амплитуда нерегулярных колебаний активной мощности сечения может быть определена по выражению:

где Р н1 , Р н2 - суммарные мощности нагрузки с каждой из сторон рас­сматриваемого сечения, МВт;

коэффициент К принимается равным 1,5 при ручном регулиро­вании и 0,75 при автоматическом регулировании (ограничении) пе­ретока мощности в сечении.

Амплитуда нерегулярных колебаний, найденная для сечения, может быть распределена по частичным сечениям в соответствии с коэффициентами распределения мощности в этом сечении.

Вычисление предельного по статической устойчивости перетока в сечении осуществляется утяжелением режима (увеличением перетока). При этом рассматриваются траектории утяжеления режима, представляющие собой последовательности установившихся режимов, которые при изменении некоторой группы параметров по­зволяют достичь границы области статической устойчивости.

Следует рассматривать увеличение перетока в сечении для ряда траекторий утяжеления, которые характерны для данной энергосис­темы и различаются перераспределением мощности между узлами, находящимися по разные стороны рассматриваемого сечения. Зна­чение Р п определяется по траектории, которой соответствует наи­меньшая предельная мощность.

Рассматриваются, как правило, сбалансированные по мощности способы утяжеления режима, т. е. такие, при которых частота оста­ется практически неизменной.

Перетоки, предельные по статической устойчивости, и перетоки, допустимые в послеаварийных режимах, определяются с учетом перегрузки оборудования (в частности по току ротора генераторов), допустимой в течение 20 мин. Большую перегрузку, допустимую в течение меньшего времени, можно учитывать, если она обеспечивается соответствующим обо­рудованием и если эта перегрузка оперативно или автоматически ликвидируется за допустимое время благодаря снижению перетока в сечении (автоматический пуск гидрогенераторов, перевод их из компенсаторного режима в активный и т. п.).

В эксплуатации для контроля соблюдения нормативных запасов устойчивости следует, как правило, использовать значения перетоков активной мощности.

При необходимости максимально допустимые и аварийно допу­стимые перетоки задаются как функции от режимных параметров (загрузки отдельных электростанций и/или числа работающих гене­раторов, перетоков в других сечениях, напряжений в узловых точках и др.). Такие параметры включатся в число контролируемых.

В зависимости от конкретных условий в качестве контролируе­мых могут использоваться и другие параметры режима энергосисте­мы, в частности, значения углов между векторами напряжений по концам электропередачи. Допустимые значения контролируемых параметров устанавливаются на основе расчетов.

Коэффициент запаса по напряжению

Значения коэффициента запаса по напряжению К ц отно­сятся к узлам нагрузки и вычисляются по формуле:

где U- напряжение в узле в рассматриваемом режиме;

Uкр- критическое напряжение в том же узле, соответствующее гра­нице статической устойчивости электродвигателей. Критическое напряжение в узлах нагрузки 110 кВ и выше при от­сутствии более точных данных следует принимать равным большей из двух величин: 0,7 Uном и 0,75 Uнорм, где Uнорм - напряжение в рассматриваемом узле нагрузки при нормальном режиме энергосистемы.

Для контроля за соблюдением нормативных запасов по на­пряжению в узле нагрузки в эксплуатационной практике могут ис­пользоваться напряжения в любых узлах сети энергосистемы. Допу­стимые значения напряжений в контролируемых узлах устанавлива­ются расчетами режимов энергосистемы.

ТРЕБОВАНИЯ К УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМ

По условиям устойчивости энергосистем нормируются ми­нимальные коэффициенты запаса статической апериодической ус­тойчивости по активной мощности в сечениях и по напряжению в узлах нагрузки. Кроме того, устанавливаются группы возмущений, при которых должны обеспечиваться как динамическая устойчивость, так и нормируемые коэффициенты запаса статической устойчивости в послеаварийных режимах.

В области допустимых режимов должно быть обеспечено отсут­ствие самораскачивания. Если самораскачивание проявляется, то должны приниматься меры по устранению его причин, а оперативно должно быть дополнительно разгружено сечение, в котором наблюдаются колебания, до исключения этих колебаний.

Допустимые перетоки определяются также допустимыми токо­выми нагрузками (перегрузками с учетом их длительности) обору­дования в заданном и в нормативных послеаварийных режимах и другими имеющимися ограничениями.

Таблица 3. Показатели устойчивости должны быть не ниже указанных:

Режим, переток в сечении

Минималь­ные коэффи­циенты запа­са по актив­ной мощно­сти

Минималь­ные коэф­фициенты запаса по напряже­нию

Группы возмущений, при которых должна обеспе­чиваться устойчивость энергосистемы

в нормаль­ной схеме

в ремонт­ной схеме

Нормальный Утяжеленный Вынужденный

При отключении элемента сети 750 кВ и выше, в том числе в результате неуспешного АПВ после однофазного КЗ, возможно применение ПА для обеспечения устойчивости, но без воздействия на разгрузку АЭС и при объеме нагрузки, отключаемой ПА, не более 5-7 % нагрузки приемной энергосистемы (большее число относится к энергосистеме, меньшее - к энергообъединению).При проектировании энергосистем в нормальной схеме и при нормальном перетоке устойчивость при возмущении группы I в сети 500 кВ и ниже должна обеспечиваться без применения ПА.

При эксплуатации энергосистем в нормальной схеме и при нор­мальном перетоке в случае возмущения группы I устойчивость дол­жна обеспечиваться без применения ПА, за исключением тех случа­ев, когда:

    выполнение требования приводит к необходимости ограничения потребителей, потери гидроресурсов или к ограничению загрузки (запиранию мощности) отдельных электростанций, в том числе АЭС;

    в результате возмущения предел статической устойчивости в се­чении уменьшается более чем на 25%.

В указанных случаях устойчивость должна обеспечиваться без воздействия ПА на разгрузку АЭС, если возможны другие управля­ющие воздействия.

Послеаварийный режим после нормативных возмущений должен удовлетворять следующим требованиям:

    коэффициенты запаса по активной мощности - не менее 0,08;

    коэффициенты запаса по напряжению - не менее 0,1;

    токовые перегрузки сетевых элементов и генераторов не превышают значений, допустимых в течение послеаварийного режима.

Длительность послеаварийного режима определяется временем, необходимым диспетчеру для восстановления условий нормального режима, не большим 20 мин. В течение этого времени возникновение дополнительных возму­щений (т. е. наложение аварии на аварию) не учитывается.

Динамическая устойчивость должна быть обеспечена для максимально допустимых перетоков в сечении, увеличенных на ∆.

Устойчивость может не сохраняться в следующих случаях: при возмущениях более тяжелых чем нормативные в данных схемно-режимных условиях;

    если при возмущении, приводящем к ослаблению сечения, пре­дел статической апериодической устойчивости в рассматриваемом сечении не превышает утроенной амплитуды нерегулярных колеба­ний мощности или уменьшается более чем на 70 %;

    если аварийный небаланс мощности приводит к приращению мощности в сечении, превышающем 50 % предела статической апе­риодической устойчивости в рассматриваемом сечении.

При не сохранении устойчивости деление по сечению должно не приводить к каскадному развитию аварии при правильной работе ПА или к погашению дефицитной по мощности подсистемы из-за недостаточности объема АЧР.

В эксплуатации любое отступление от требований, относящихся к нормальному перетоку (первая строка табл. 3) или к дли­тельности послеаварийного режима (20 мин), означает переход к вынужденному перетоку и должно быть разрешено высшей опера­тивной инстанцией, в ведении или управлении которой находятся связи этого сечения. Такое решение, как правило, принимается при планировании ре­жимов исходя из располагаемых оперативных резервов активной мощности.

Переход к вынужденному перетоку в сечении на время прохож­дения максимума нагрузки, но не более 40 мин (дополнительно к 20 мин, разрешенных для послеаварийного режима), или на время, необходимое для ввода ограничений потребителей и/или мобилиза­ции резерва, может быть выполнен оперативно по разрешению де­журного диспетчера указанной высшей оперативной инстанции.

При планировании режимов энергосистем должна быть ис­ключена работа сечений, обеспечивающих выдачу мощности АЭС, с вынужденными перетоками.

На связях, по которым возможны асинхронные режимы, пре­дусматриваются устройства ликвидации асинхронных режимов, дей­ствующих, в том числе, на деление энергосистем. Ресинхронизация, как с применением автоматических устройств, так и самопроизвольная, должна резервироваться делением.

Допустимая длительность асинхронного режима и способ его прекращения устанавливаются для каждого сечения с учетом необ­ходимости предотвращения повреждений оборудования энергосис­темы, дополнительных нарушений синхронизма и нарушений элек­троснабжения потребителей. При этом особое внимание следует уде­лять устойчивости электростанций и крупных узлов нагрузки, вблизи которых может оказаться центр качаний.

ОПРЕДЕЛЕНИЕ ДОПУСТИМЫХ РЕЖИМОВ, УДОВЛЕТВОРЯЮЩИХ НОРМАТИВНЫМ ТРЕБОВАНИЯМ (предыдущего раздела)

Расчеты устойчивости энергосистем и расчетная проверка мероприятий по ее обеспечению осуществляются при проектирова­нии и эксплуатации энергосистем.

Расчеты устойчивости выполняются для:

    выбора основной схемы энергосистемы и уточнения размеще­ния основного оборудования;

    определения допустимых режимов энергосистемы;

    выбора мероприятий по повышению устойчивости энергосисте­мы, включая средства ПА и параметры их настройки;

    определения параметров настройки систем регулирования и уп­равления, релейной защиты, АПВ и т. д.

Кроме того, расчеты устойчивости проводятся при разработке и уточнении требований к основному оборудованию энергосистемы, релейной защите, автоматике и системам регулирования по услови­ям устойчивости энергосистем.

Так как принимается, что переток в сечении под действием нерегулярных колебаний мощности меняется в диапазоне Р ± ∆Р нк, то требованиям к устойчивости должен соответство­вать переток Р м + ∆Р нк, где Р м - максимально допустимый переток.

Переток Р м должен соответствовать коэффициенту запаса устойчивости по активной мощности КР, не меньшему 20 % (см. табл. 3): РМ ≤0,8РПР - ∆РНК.

Переток Р м должен соответствовать коэффициенту запаса по напряжению, не меньшему 15 % во всех узлах нагрузки: Р м ≤ P(U) - ∆Р к, при U= UКР/0,85.

Зависимость перетока от наименьшего напряжения строится на основе численного моделирования при различных перетоках мощ­ности в рассматриваемом сечении. Это требование означает, что при исчерпании других возможностей регулирования напряжения необ­ходимый запас по напряжению обеспечивается за счет снижения пе­ретока мощности в сечении.

Переток Р м должен быть таким, чтобы во всех послеаварийных схемно-режимных условиях, которые могут возникнуть в результате нормативных возмущений (ослабление сечения и/или ава­рийный небаланс мощности) с учетом действия ПА и/или первично­го регулирования частоты, выполнялось требование:

При

где
- переток активной мощности в рассматриваемом сечении в доаварийном режиме;

- активной мощности в сечении в послеаварийном установившемся режиме, в том числе после аварийного небаланса мощности, приводящего к увеличению перето­ка в сечении;

- предельная мощность в сечении по апериодической стати­ческой устойчивости в послеаварийной схеме, которая, в частности, в случае аварийного небаланса мощности мо­жет совпадать с исходной (рассматриваемой) схемой или измениться в случае ослабления сечения при аварийном отключении сетевых элементов или его усиления за счет отключения шунтирующих реакторов и т. п.;

∆Р ПА - приращение допустимого перетока мощности в сечении за счет управляющих воздействий ПА долговременного действия на изменение мощности.

Переток в доаварийном режиме представляется в виде функции от перетока в послеаварийном режиме для возможности учета влия­ющих факторов, например, изменения потерь мощности или шунти­рующих связей, не включенных в рассматриваемое частичное сече­ние.

Приращение активной мощности в сечении, обусловленное ава­рийным небалансом мощности или управлением мощностью ПА, зависит от динамических харакгеристик всех параллельно работаю­щих энергосистем. Так как расчет указанного приращения по пол­ной модели может оказаться затруднительным, допускается его рас­чет по упрощенной формуле с использованием обобщенной инфор­мации о подсистемах:

где ∆Р сеч - приращение мощности в сечении за счет аварийного небаланса или применения ПА;

n = 1, 2, ..., N - подсистемы передающей части энергосистемы;

т = 1,2,..., М- подсистемы приемной части энергосистемы;

- аварийный избыток мощности (отключаемая гене­рация - с минусом) в передающей части;

- аварийный дефицит мощности (отключаемая нагруз­ка - с минусом) в приемной части;

Кfn, Kfm - соответственно коэффициент частотной статической характеристики подсистем: n - передающей и т -приемной частей энергосистемы;

Р н m , Р н n - соответственно суммарная нагрузка подсистем n и т.

4.2.4. В каждом из нормативных послеаварийных режимов во всех узлах нагрузки коэффициент запаса по напряжению должен быть не менее 10 %:

При

Зависимость перетока в исходном (доаварийном) режиме от наи­меньшего напряжения в установившемся послеаварийном режиме строится на основе численного моделирования нормативных возму­щений и действия ПА при различных исходных перетоках мощнос­ти в рассматриваемом сечении.

Максимально допустимый переток мощности в любом се­чении в рассматриваемом режиме должен не превышать предельно­го по динамической устойчивости перетока в том же сечении при всех нормативных возмущениях с учетом действия ПА:

Переток Р м в послеаварийных режимах не должен приводить к токовым перегрузкам, превышающим допустимые значения:

При

где
- ток в наиболее загруженном сетевом элементе в послеава­рийном установившемся режиме;

- допустимый ток с перегрузкой, разрешенной в течение 20 мин при заданной температуре окружающей среды в том же элементе.

Выбор котельного оборудования - важный и ответственный момент в инженерном обеспечении любого дома.

В настоящее время рынок водогрейных котлов промышленного назначения расширяется.

Многие хотят купить котёл дешевле, ставят один котёл большой мощности, вместо двух.

Для примера: При работе котла с ручной загрузкой топлива мощностью 1,5 Гкал./ч., топливо уголь. При загрузке котла открывается дверца, тяга из поддувала прекращается, через котёл проходит холодный воздух с топочной дверцы, плюс холодное топливо, результатом выше сказанного является охлаждение котла. Как показала практика, при каждой загрузке большого котла, температура теплоносителя снижается на пять-шесть градусов, чтобы поднять температуру теплоносителя до первоначального значения требуется минимум 20 минут. Загрузка происходит два раза в час. В этих условиях, чтобы сохранить температуру прибегают к "форсированному режиму", уменьшается время нагрева теплоносителя, вместе с этим температура дымовых газов увеличивается в два раза и доходит до 500 градусов. КПД котла резко падает с 80 до 40.

В сутки перерасход угля может доходить до 2500 кг или 7500 руб. В месяц 225000 руб. Перерасход угля достигает до 30%, дров до 50%.

Для сравнения на котлах до 0,8 Гкал/ч. при загрузке топлива теряем 1-2 градуса по теплоносителю, что соответствует 5-7 минутам работы котла на номинальном режиме, для выхода котла на прежний режим.

Ещё пример: Многие котлы, выпускаемые сегодня промышленностью, имеют ряд недостатков.

К ним можно отнести: невозможность или затруднительная очистка поверхности труб, накипеобразование, применение мощных вентиляторов (большое аэродинамическое сопротивление), применение циркуляционных насосов большей мощности (большое гидравлическое сопротивление), потери КПД после полугода эксплуатации из-за накипи и сажи.

При заказе котла на твёрдое топливо, особо обратите внимание на устройство топки.

Объём топочного пространства должен быть достаточен для сжигания именно вашего вида топлива (по теплоте сгорания топлива). Тут экономить не следует. Пламя в топке должно гореть ровным соломенным цветом, верх пламени не должен касаться потолочного экрана котла, а тем более уходить в экономайзерную часть. При этом необходимо обращать внимание на равномерное заполнение "зеркала горения" при загрузке.

Хорошие показатели достигаются при использовании "шахтных топок".

Рассмотрим горение сырого топлива в котлах. Если топка имеет недостаточный объём, то пламя, не достигнув максимальной температуры, касается холодных труб и гаснет, при этом происходит недожог горючих газов, унос их в экономайзерную часть котла и в атмосферу, интенсивное оседание сажи на стенках труб, в результате котёл не развивает номинальной мощности. Соответственно температура теплоносителя на входе в котёл менее шестидесяти градусов, стенки труб при этом покрываются конденсатом (или как ещё говорят: "котёл плачет"). Происходит отложение сажи, КПД котла резко уменьшается, котёл работает "вхолостую", как правило, в этом случае приходится начинать с чистки котла.

Это цепная реакция на пренебрежение к пламени. Вспомните, как горит костёр. Сравните количество топлива, и высоту пламени, а теперь представьте, если горит одновременно 300 кг дров, опила, стружки, угля.

"Шахтная топка" или "Топка с зажигательным поясом" не имеет этих недостатков, т.к. развитию пламени ничего не мешает, а раскаленный шамотный кирпич во многом помогает, при загрузке свежей порции топлива (сушит, температура пламени так резко не опускается). Возможно применение отработанных газов, но это путь к дополнительным затратам с менее эффективными результатами.

Многие спрашивают, зачем нужна линия рециркуляции воды в котельной?

В современном котлостроении, когда КПД котла превышает 70%, а то и 94%, температура уходящих дымовых газов может иметь значение 120 - 180 оС. Как правило, такие температуры уходящих газов бывают при межсезонной эксплуатации, когда температура теплоносителя даже на выходе из котельной не превышает 60 оС.

Рассмотрим понятие "точка росы". В уходящих дымовых газах имеется влага, так вот чем ниже температура горения, тем ниже температура теплоносителя. При прохождении дымовых газов через котел, особенно через экономайзерную часть, на стенках холодных труб конденсируется влага. Это приводит к интенсивному отложению сажи, серы, в результате - коррозия металла. Отсюда следует потеря КПД котла и преждевременный износ. Особенно это наблюдается при работе котлов на мазуте и неочищенной нефти (образование кислот).

Этого можно избежать, если с учётом применяемого топлива, настроить линию рециркуляции так, чтобы "обратная вода" попадала в котёл с температурой выше "точки росы". При такой эксплуатации котёл легче выходит на номинальный режим, с хорошим КПД и мощностью. Линия рециркуляции в котельной требуется и по ряду других причин, будь то авария на трассе или запуск холодных котлов.

Многие заказчики, не обращают внимания на наличие термометров на отработанные газы и тягонапоромеров. Или эти приборы отсутствуют в котельных.

Рассмотрим пример эксплуатации без термометра на выходе дымовых газов, при работе нескольких котлов на одну дымовую трубу, с дымососом.

Без термометра здесь не обойтись. В ГОСТе указаны максимальные температуры уходящих газов на номинальном режиме эксплуатации (180-280 градусов).

Превышение или уменьшение этой температуры ведёт к преждевременному выходу из строя котла или дымовой трубы, перерасходу топлива. Не зная температуры уходящих газов не настроить агрегат на номинальный экономичный режим. Регулировки производятся шибером с использованием показаний тягонапоромера.

При заказе котлоагрегатов, желательно производить подбор с учётом их гидравлического сопротивления при номинальном расходе воды через котёл.

При правильной регулировке котла, подборе сетевых насосов, разница температуры теплоносителя на номинальном режиме, между входом и выходом из котла составляет от 10 до 30 градусов, в зависимости от КПД котла и вида топлива. Гидравлическое сопротивление по котлу при этом может изменяться, в зависимости от количества пропущенной через котел воды.

Котлы с большим показателем сопротивления по воде, требуют более мощных сетевых насосов, а так же тщательной регулировки задвижками, при работе в паре с котлом с меньшим показателем сопротивления.

Регулировка котла по количеству проходящей воды, возможна без применения счётчика, так при номинальном режиме работы котла, при помощи входной задвижки, перекрывая её можно добиться разницы в температуре теплоносителя по "паспорту". Следует отметить, что "паспортных" величин можно добиться, ёсли температура теплоносителя на входе в котёл будет минимум 60 градусов. Для примера, при температуре воды 40 градусов разница будет составлять 6-8 градусов, при температуре воды 90 градусов на входе, на выходе может доходить до 120 градусов.

Следует обратить внимание и на маркировку котлов по топливу. С одной и той же маркировкой буквы "К", котлоагрегат может работать на всех видах твёрдого топлива, но за основу производительности берётся "антрацит" или "каменный уголь".

При заказе котла, следует знать теплоту сгорания Вашего топлива, прочитав ГОСТ, применить поправочный коэффициент. Заказ же котла произвести с учётом этих расчётов и не забудьте при заказе, что если стоит буква "Д" поинтересоваться объёмом топки котла или комплектацией отдельной топкой. И с учётом потерь тепла по различным причинам, будь то человеческий фактор или иной, заказ по мощности котла нужно производить на порядок выше, а с учётом наших непредсказуемых зим иметь запасные котлы.

Несколько слов о газоходах в котельных: газоходы должны быть выполнены с учётом сжигаемого топлива. Также следует учесть количество котлов, наличие "газоотбойников", необходимо предусмотреть увеличение сечения газохода после каждого котла, следует уделить внимание "газоплотности" и утеплению, по возможности утеплить дымовую трубу срок службы трубы при этом увеличивается в 2-3 раза.

Особенности сжигания низкосортных топлив.

При сжигании низкосортных топлив (повышенной зольности и влажности) сильно осложняется работа всех узлов и участков котельного агрегата, снижается надежность работы самого котла, дымососов и другого вспомогательного оборудования.

По данным испытаний (ВТИ, НПО ЦКТИ) присосы в топках доходят до 15 - 20%, вместо проектных 4 - 5%, а за котлом доходят до 70% вместо 30% по нормам. Это приводит к значительным потерям с уходящими газами.

Наряду с увеличенными потерями теплоты с уходящими газами (q2), ощутимо увеличиваются потери с механическим недожогом (q4). Общий КПД котла при работе на низкосортных углях снижается (по сравнению с работой на качественных углях) на 5 - 7%.

Расчетные зависимости теоретической температуры в топке θa = Ta - 273°C от зольности и влажности углей показывают, что повышение зольности Ас на каждые 10% приводит к снижению теоретической температуры в топке на 40 - 100°С (в зависимости от влажности). Температура в очаге горения при этом снижается на 30 - 90°С.

Уменьшение Wр на 10% повышает теоретическую температуру горения на 100 - 160°С, а температуру в ядре горения на 85 - 130°С (в зависимости от зольности).

Так, теоретическая температура горения угля с калорийностью 3600 ккал/кг составляет 1349°С (при сжигании каменного угля с калорийностью 5000 ккал/кг она составляет 1495°С).

Необходимо отметить, что Нормативный метод расчета котельных агрегатов для высокозольных топлив дает несколько заниженное значение температуры газов на выходе из топки θ"m, что обусловлено сильным влиянием золы на оптическую плотность среды в топке.

Снижение температуры в ядре горения вредно. Оно приводит к увеличению доли неоплавленных остроугольных золовых частиц в уносе, что может приводить к эрозии хвостовых поверхностей нагрева. Высокие температуры ядра горения необходимы не только для снижения доли неоплавленных высокоэрозионных частиц, но и с точки зрения обеспечения заданного теплосъема в топочной камере.

Объем топочной камеры

Для успешного сжигания низкосортных углей непременным условием является снижение величины теплонапряжения топочного объема (Q/V).

В котлах малой мощности величина теплонапряжения топочного объема Q/V, полученная из конструктивных расчетов

Q/V = 0,4 ÷ 0,5 Гкал/м³/ч

для сжигания низкосортных топлив является недопустимо большой.

Это говорит о том, что мал объем топочной камеры, нет необходимой высоты для стабилизации горения низкосортных топлив. (Для информации: - это участок, где выдерживается соотношение (CO2max - CO2min) / CO2 = 0,3).

Величина Q/V при сжигании каменных углей не должна быть больше 0,3 ккал/м³/ч, а при сжигании низкокачественных топлив величина теплонапряжения топочного объема должна быть существенно меньше.

Зажигательный пояс

Устройство в топочных камерах зажигательных поясов позволяет сжигать топлива с низкой теплотой сгорания (до 2000 ккал/кг).

В случае необходимости сжигания еще менее калорийных топлив необходим подогрев дутьевого воздуха.

Для предотвращения шлакования котла необходимо, чтобы факел не касался ограждений в пристенных зонах топочной камеры и отсутствовала полувосстановительная газовая среда, а температура на выходе из топки при номинальной нагрузке не превышала температуру начала размягчения золы более, чем на 50°С.

Равномерность подачи топлива

При переходе на сжигание низкокачественных топлив еще более ужесточаются требования, предъявляемые к равномерности подачи топлива.

Колебания в подаче топлива и воздуха (окислителя) приводят к появлению в одних местах котла окислительных, а в других - восстановительных зон горения, что является причиной потери устойчивости и надежности котла, потери нагрузки и даже прекращения горения.

Конструктивные особенности котла

Применяемые конструкции топочных камер котлов малой мощности квадратного поперечного сечения являются наилучшей конструкцией с точки зрения равномерности температур и тепловых потоков по периметру топки, но крайне не достаточной высоты.

Конструкции типовых котлов малой мощности привлекают компактностью, решениями компоновки трубных систем и грамотным построением гидравлических схем.

Для продолжения дальнейших разработок котлов малой мощности необходимо использовать следующие конструктивные зависимости:

Сравнение значений, полученных из расчетов типовых котлов малой мощности и необходимых значений, приведенных на графиках (для твердотопливных котлов мощностью 1 Гкал/ч)

Особенности конструирования котельных установок малой мощности, работающих на отходах пиления и обработки древесины

Все рабочие процессы в котельной установке - это взаимодействие (теплообмен) двух организованных потоков: газов (продуктов горения топлива) и нагреваемой воды (в водогрейных котлах, на которых, в силу указанных выше причин, и остановим внимание).

Топочные устройства или просто топки бывают двух основных видов: слоевые и камерные. Слоевые топки применяют при сжигании кускового твердого топлива. Топливо в таких топках сгорает в плотном слое на колосниковой решетке. Оптимальная высота слоя для каждого вида топлива своя и также зависит от влажности топлива. Например, при сжигании опилок высота слоя рекомендуется порядка 300 мм. Камерные топки предназначены для сжигания мелкофракционного топлива (например, угольной пыли) непосредственно в топочном объеме (камере). В последнее время для сжигания опилок разработаны и успешно работают топки с кипящим слоем и топки со смешанным камерно-слоевым горением. Топки с кипящим слоем выполняются с цепной решеткой, что усложняет и удорожает их конструкцию и ограничивает применение таких топок для котлов малой мощности. Топки камерно-слоевого горения за счет интенсификации горения, наоборот, требуют меньшей площади колосников и объема топочной камеры. В таких топках на колоснике размещается, как бы, очаг поддержания горения для периодически вдуваемого в камеру топлива. Не сгоревшее в вихре камеры топливо оседает на колосники, образуя очаг.

При сжигании древесины выделяется большое количество горючих газов (летучих веществ), поэтому пламя древесины имеет значительную высоту - до 2-х метров. При низкой высоте топочной камеры пламя упирается в свод теплообменника, охлаждаемый теплоносителем, летучие остывают, оседают на своде. Происходит недожог смол и других летучих веществ. Соответственно они оседают на трубах теплообменника и закоксовывают его. Это значительно снижает общий КПД котла. Поэтому для надежной и качественной работы котла на отходах деревообработки высота топочного пространства над колосниками должна быть не менее 2-х метров.

Очень важна для сжигания опилок с относительной влажностью выше 20% температура дутьевого воздуха. Очевидно, что дутье с температурой воздуха выше 100 градусов позволяет подсушивать опилки при их подаче в факел, а при нагреве древесины опилок до 300 градусов С происходит возгонка летучих составляющих и ее самовозгорание, что еще более интенсифицирует горение.

По виду топливоподачи топки бывают ручные, механизированные и автоматизированные, а котельные бывают автоматические. В котельных-автоматах постоянное присутствие оператора не требуется. Ручные слоевые топки оборудуются простой неподвижной колосниковой решеткой, под которую подводится вентиляторное дутье воздуха. В механических топках операции подачи топлива, выноса шлака и золы механизированы. В автоматизированных котельных установках управление механизмами (включение и выключение в нужный момент) выполняют специальные устройства (например, температурные реле или реле времени).

Особенности устройства и работы котлов на жидком топливе.

Отличие жидкотопливных и твёрдотопливных котлов в основном по длине и объёму камеры сгорания. При заказе котла изучите технические характеристики существующей горелки, длину и ширину факела на номинальном режиме. Топка котла при этом должна быть длиннее факела горелки примерно на 150мм., что предотвращает недожог топлива.

Технические характеристики горелок как отечественных, так и импортных имеют большое отличие. Прежде чем приобрести котёл - подберите горелку, удовлетворяющую вашим требованиям и топливу.

Для помощи в более качественном сжигания любого отечественного топлива, при применении как импортных так и отечественных горелок, нашим предприятием изготовлен мазутоподогреватель ИжПМ, позволяющий сжигать любое топливо (подробности в разделе).

Установка газовых котлов должна выполняться в соответствии с требованиями нормативных документов. Сами жильцы, владельцы здания не могут установить газовое оборудование. Оно должно устанавливаться в соответствии с проектом, который может быть разработан только организацией имеющей на это лицензию.

Устанавливаются (подключаются) газовые котлы также специалистами лицензированной организации. Торгующие фирмы, как правило, имеют разрешительную документацию на послепродажное обслуживание автоматизированного газового оборудования, зачастую на проектирование и монтаж. Поэтому удобно воспользоваться услугами одной организации.

Далее в ознакомительных целях приведены основные требования к местам, где могут быть установлены котлы, работающие на природном газе (подключенные к газовой магистрали). Но строительство подобных сооружений должно вестись в соответствии с проектом и требованиями нормативов.

Разные требования к котлам с закрытой и открытой камерой сгорания

Все котлы подразделяются по типу камеры сгорания и способу ее проветривания. Закрытая камера сгорания проветривается принудительно с помощью встроенного в котел вентилятора.

Это позволяет обходиться без высокого дымохода, а только лишь горизонтальным участком трубы и забирать воздух для горелки с улицы через воздуховод или тот же дымоход (коаксиальный дымоход).

Поэтому требования для места установки одного настенного маломощного (до 30 кВт) котла с закрытой камерой сгорания не столь жесткие. Он может устанавливаться в сухом подсобном помещении, в том числе и на кухне.

Установка газового оборудования в жилых комнатах запрещена, в ванной комнате запрещена

Другое дело котлы с открытой горелкой. Работают они на высокий дымоход (выше конька крыши), создающий естественную тягу через камеру сгорания. А воздух забирают непосредственно из помещения.

Наличие такой камеры сгорания влечет основное ограничение — эти котлы должны устанавливаться в отдельных специально выделенных для них помещения – топочных (котельных).

Где может располагаться топочная (котельная)

Помещение для установки котлов может располагаться на любом этаже частного дома, в том числе и в цокольном и в подвальном, а также в чердачном помещении и на крыше.

Т.е. под топочную можно приспособить помещение в пределах дома имеющее размеры не менее нормативных, двери из которого ведут на улицу. А также оборудованное окном и вентиляционной решеткой определенной площади и др.
Топочная может располагаться и в отдельно стоящем здании.

Что и как можно размещать в топочной

Свободный проход с фронтальной стороны установленного газового оборудования должен быть шириной не менее 1 метра.
В топочной может размещаться до 4 единиц отопительного газового оборудования с закрытыми камерами сгорания, но суммарной мощностью не более 200 кВт.

Размеры топочной

Высота потолков в топочной (котельной) — не менее 2,2 метра, площадь пола не менее 4 м кв. на один котел.
Но объем топочной регламентируется в зависимости от мощности установленного газового оборудования:
— до 30 кВт включительно – не менее 7,5 м куб;
— 30 – 60 кВт включително – не менее 13,5 м куб;
— 60 – 200 кВт – не менее 15 м куб.

Чем оборудуется топочная

Топочная оборудуется дверьми на улицу шириной не менее 0,8 метра, а также окном для естественного освещения площадью не менее 0,3 м кв. на 10 м куб. топочной.

Топочная снабжается однофазным электроснабжением 220 В, выполненным в соответствии с ПУЭ, а также водопроводом, соединенным с отоплением и горячим водоснабжением, а также канализацией, которая может принять воду при аварийном затоплении, в том числе и в объемах бойлера и буферной емкости.

Не допускается наличие в котельной горючих, пожароопасных материалов, в том числе отделочных на стенах.
Газовая магистраль в пределах топочной должна быть оборудована запорным устройством по одному на каждый котел.

Как должна проветриваться топочная (котельная)

Топочная должна оборудоваться вытяжной вентиляцией, можно соединенной с вентиляционной системой всего здания.
Свежий воздух к котлам может подаваться через вентиляционную решетку, которая устанавливается в нижней части двери или стены.

При этом площадь отверстий в этой решетке не должна быть меньше чем 8 см квадратных на один киловатт мощности котла. А если приток изнутри здания – не менее 30 см кв. на 1 кВт.

Дымоход

Значения минимального диаметра дымохода в зависимости от мощности котла приведены в таблице.

Но основное правило такое – площадь сечения дымохода не должна быть меньше площади выходного отверстия в котле.

В каждом дымоходе должно быть ревизионное отверстие, расположенное ниже входного отверстия дымохода не менее, чем на 25см.

Для устойчивой работы дымоход должен быть выше конька крыши. Также ствол дымохода (вертикальная часть) должны быть абсолютно прямолинейным.

Данные сведения приведены исключительно в ознакомительных целях для формирования общего представления о топочных в частных домах. При строительстве помещения для размещения газового оборудования необходимо руководствоваться проектными решениями и требованиями нормативных документов.

KОТЕЛЬНЫЕ УСТАНОВКИ
3.1 Классификация котлов
Часть котла, где происходит горение топлива, называется топкой. При горении топлива в топк котла высвобождается тепло, которое передается от продуктов сгорания (газов горения) через металлтческие поверхности нагрева воде. Топки разделяются на камерные и слоевые.
В камерных топках сжигают газообразные, жидкие и твердые (пелеты или гранулы) топлива. Горение проходит в объеме топки. Тесно связана с камерной топкой горелка. Наиболее простая классификация горелок по виду сжигаемого топлива: газовые, горелки жидкого топлива, горелки твердого топлива (для пелет или гранул).

Рис.3.1 Газовая горелка . 1- корпус горелки, 2 – привод горелки и вентлятор, 3 – запальник, 4 – контролирующая автоматика горелки, 5 – головка горелки, 6- регалятор подачи воздуха, 7 – установочные фланцы.
Малые котлы, работающие на твердом топливе, в большинстве имеют слоевые или с колосниковой решеткой топки.

Котлы со слоевыми топками можно разделить на следующие основные типы:


- котлы с верхним горением (рис. 3-3а)

Котлы с нижним горением (рис. 3- 3в)

Котлы с поворотным пламенем и т.д.

Рис. 3.2 Мазутная горелка жидкого топлива . 1 – корпус горелки, 2 – регулятор воздуха, 3 – вентилятор горелки, 4 – привод горелки, 5 – топливный насос, 6 – головка горелки, 7 – установочный стержень для сопел, 8 – сопла, 9 – контрольная автоматика горелки, 10 – запальник.


Рис. 3.3 а – котел с верхним горением, в – котел с нижним горением (1 – первичный воздух, 2 – вторичный воздух, 3 – газы горения)
Топка котла с верхним горением – традиционная, предназначенная для сжигания топлив с низким содержанием летучих . Термическое разложение топлива и горение образовавшихся летучих и кокса происходит в самом объеме камерной топки. Большая часть выделяющегося тепла передается стенам топки излучением. При сжигании топлива с высоким содержанием летучих (древесина, торф) в объеме топки оставляют место, достаточное для горения летучих, куда подается вторичный воздух.

Котел с нижним горением имеет шахту для топлива, откуда постоянно подается на решетку топливо взамен сгоревшего. Двигаясь в шахте, толиво сушится и подогревается. В горенни участвует определенная часть топлива, бОльшая часть топлива, находящегося на решетке термически не обрабатывается и сохраняет первоначальное содержание летучих. Непосредственно вблизи решетки топливо газифицируется, образовавшиеся летучие догорают в отдельно расположенной камере сгорания, куда и подается вторичный воздух, чтобы обеспечить достаточновысокую температуру горения. Одна из стенок камеры догорания обычно делается керамической.
При усовершенствовании котла с поворотным пламенем и нижним горением разработан котел с поворотным горением (рис.3.4а ), в котором используется стабилизирующая процесс горения керамическая решетка. Вследствие очень хороших услових горения у этого котла камера догорания имеет меньший объем по сравнению с котлом с нижним горением.
Отдельным типом котла можно считать котел с двумя раздельными камерами сгорания (топками ) – котел-универсал (рис. 3.4 b ). В меняющихся условиях топливоснабжения и цен на топливо такой котел очень удобен, поскольку в нём можно сжигать как жидкие топлива, дрова, древесные отходы, торф, брикетированный торф, древесные пелеты (гранулы), так и каменный уголь и т.д.. В котле, как уже сказано, две независимые друг от друга топки: топка с верхнним горением твердого топлива и топка для сжигания жидкого топлива, на фронт которой устанавливается горелка жидкого топлива. Котел расчитан на одновременное использование двух видов топлива. Сжигая твердое топливо, следует топливо добавлять чаще, чем, например, в случае топки с нижним горением, которая снабжена шахтой топлива. Горелка жидкого топлива включается автоматически в случае, если твердое топливо сгорело и температура воды в котле опустилась ниже допустимого.

Обычно у этих котлов теплообменник горячей воды из спиралевидных труб и есть возможность установки электрических нагревателей. Таким образом , котел может быть электрическим, его можно топить твердым и жидким топливом и с этим котлом нет необходимости в отдельном бойлере горячего водоснабжения.


Рис. 3.4 а – котел с поворотным пламенем, b – котел-универсал с двумя топчными камерами (1 – первичный воздух, 2 –вторичный воздух, 3 – газы горения).

3.2 Показатели эффективности топок
Топка – часть котельной установки, где происходит горение топлива.

Тепло, высвобождающееся при горении топлива, продуктами горения передается воде через поверхности нагрева . Поверхности нагрева производят обычно металлическими или чугунными. Теплообмен между внутренней и внешней средами, разделенными поверхностью нагрева, происходит путем излучения, конвекции, теплопроводности. Тепло продуктов горения передается на внешнюю поверхность излучением и конвекцией. В топках доля излучения составляет более 90%. Через материал поверхности нагрева (металл), а также отложения на внешней поверхности нагрева и накипи на внутренней поверхности нагрева передается тепло теплопроводностью.


Для характеристики работы топок пользуются различными показателями:

Тепловая мощность топки – количество теплоты, которое выделяется при горении топлива в единицу времени, kW

B – расход топлива, kg/s

Q a t – низшая теплота сгорания kJ/kg
Форсирование топки – количество теплоты, которое выделяется за единицу времени на единицу поверхности поперечного сечения топки, kW/m 2

где А – площадь поперечного сечения топки, m 2 .
Удельная объемная мощность топки – количество теплоты, которое выделяется на единицу объема топки в единицу времени, kW/m 3 .

где V – объем топки, m 3 .
Удельная тепловая мощность решетки (слоевой) топки – количество теплоты, которое выделяется с поверхности решетки в единицу времени.

R – площадь поверхности решетки, m 2

V – объем топочной камеры, m 3

К.п.д. котла по прямому балансу находится отношением полезно используемого тепла Q kas к количеству тепла, поданного в в топку:


где G – расход воды через котел ,

h 1 – энтальпия воды на входе в котел

h 2 – энтальпия воды на выходе из котла
К.п.д. котла (брутто- к.п.д. не учитывает расход энергии на собственные нужды) по косвенному балансу :

где q 2 – потери тепла с уходящими газами;

q 3 – потери тепла от хим. недожега;

q 4 – потери тепла от мех. недожега;

q 5 – потери тепла от выстывания котла;

q 6 – потери тепла с физическим иеплом шлака.
Для того, чтобы найти нетто-к.п.д. котла нужно cнять расход количества теплоты q s ot и электрической энергии q e ot на собственные нужды:

Обычно расход на собственные нужды (на работу воздуходувки, насосы и т.д.) для газовых и на жидком топливе котлов составляет не более 0,3... 1%. Чем мощнее котел, тем меньше процент.
К.п.д. котла на номинальной нагрузке отличается от к.п.д. кола на частичной нагрузке. При уменьшении нагрузки котла ниже номинальной в определенном количестве снижаются потери тепла с уходящими газами и от хим. недожега. Потери от выстывания остаются прежними и их процентная доля значительно возрастает. И это является причиной, почему при снижении нагрузки котла уменьшается и к.п.д. котла.
Отдельным вопросом являются потери котла при периодической работе , которые в общем случае вызваны следующими причинами:

Потери от наружного выстывания;

Q k.f. – физическая теплота топлива;

Q p – теплота пара, который используется для расспыления топлива в топке или подается под топочную решетку;

Q k a – теплота сгорания газового топлива.
При сжигании сланца используемое тепло топлива вычисляется по формуле:

Где ΔQ ka означает теплоту эндотермического эффекта, обусловленного неполным разложением карбонатов:

При полном разложении k CO 2 = 1 и ΔQ ka = 0
Тепло Q t k , подаваемое в в котельную установку, разделяется на полезно используемое Q 1 и тепловые потери :
Q 2 – с уходящими газами;

Q 3 – от химического недожега;

Q 4 – от механического недожега;

Q 5 – от выстывания котла;

Q 6 – с физическим теплом шлака.
Приравняв между собой используемое тепло топлива Q t k c затратами тепла, получим:

Это выражение называется уравнением теплового баланса котельной установки.
Уравнение теплового баланса в процентном выражении:

где


3.4 Тепловые потери котла
3.4.1 Теплове потери с уходящими из котла газами

где H v . g . – энтальпия уходящего газа из котла в kJ/kg или kJ/m 3 (сжигаемого топлива 1 kg или 1 m 3)

α v . g – коэффициент избытка воздуха

H 0 k . õ – энтальпия воздуха, необходимого для сжигания 1 kg или 1 m 3 топлива (до воздухоподогревателя) в kJ/kg или kJ/m 3 .


где V i объемы компонентов (V RO 2 , V N2 , V O2 ,V H2O) уходящих газов на единицу массы или объема топлива m 3 / kg , m 3 / m 3

c’ i – изобарная объемная теплоемкость соответствующего газового компонента kJ/m 3 ∙К

θ v.g - температура уходящих из котла газов.
На величину теплопотери q 2 значительное влияние оказывает как температура уходящих газов θ v.g , так и коэффициент избытка воздуха α v . g .

Температура уходящих газов увеличивается из-за загрязнения поверхностей нагрева, коэффициент избытка воздуха работающего под разряжением котла –

из-за увеличения неплотностей. Обычно теплопотеря q 2 составляет 3...10 %, но вследствие выше перечисленных факторов может увеличиться.
Для практического определения q 2 при теплотехнических испытаниях котла следует определить температуру уходящих газов и коэффициент избытка воздуха. Для определения коэффициента избытка воздуха необходимо измерить процентное содержание RO 2 , O 2 , СО в уходящих газах.



      1. Тепловые потери от химически неполного сгорания топлива (хим.недожега)

Потери с хим.недожегом обусловлены тем , что часть горючего вещества топлива остается в топке неиспользованным и выходит из котла в виде газовых компонентов (СО, Н 2 , СН 4 , СН...). Полное сгорание этих горючих газов практически невозможно из-за низких температур за топкой. Основные причины хим.недожега следующие:

Недостаточное количество воздуха, полаваемого в топку,

Плохое смешивание воздуха с топливом,

Малый объем топки, что определяет время нахождения топлива в топке, которого не хватает для полного сгорания топлива,

Низкая температура в топке, которая снижает скорость горения;

Слишком высокая температура в топке, которая может привести к диссоциации продуктов горения.
При правильном объеме воздуха и хорошем смешивании q 3 зависит удельной объемной мощности топки. Оптимальная объемная мощность топки, где q 3 минимальная зависит от сжигаемого топлива, технологии сжигания и конструкции топки. Теплопотеря от хим.недожега составляет 0...2% при удельной объемной мощности q v = 0,1 ... 0,3 MW / m 3 . В топках, где происходит интенсивное горение топлива q v = 3... 10 MW / m 3 , теплопотеря от хим.недожега отсутствует.


      1. Потери тепла от механического неполного сгорания (от мех.недожега)

Теплопотери от мех.недожега q 4 обусловлены содержанием горючего вещества топлива в выходящих из котла твердых остатках горения. Часть твердого горючего вещества, которая содержит углерод, водород и серу, уходит вместе с уходящими газами в верхней части топки в виде 1. летучей золы , часть твердых горючих остатков удаляются с решетки или из-под решетки вместе 2. со шлаком ; может иметь место частичное 3. проваливание топлива через ячеки решетки.

При сжигании жидкого и газового топлива потери от мех.недожега отсутствуют, за исключением тех случаев, когда образуется сажа, которая выносится из котла вместе с уходящими газами горения.
Потери от мех.недожега можно вычислить по формуле:

где α r , α v , α lt - удельные количества твердого горючего остатка, который удален с решетки (α r), или из-под решетки как провалившегося сквозь неё (α v), или ушедшего из котла вместе с горючими газами в виде летучей золы (α lt).


Р r , Р v , Р lt – процентное % содержание горючего вещества в трех горючих остатках.
Q t k – используемое тепло kJ/kg;

      1. Тепловые потери от внешнего выстывания котла

Тепловые потери от внешнего выстывания котла обусловлены проникновением тепла через обмуровку и тепловую изоляцию. Тепловые потери q 5 зависят от толщины обмуровки и толщины тепловой изоляции деталей котельной установки. В случае больших (мощных) котлов поверхность котла в сравнении с объемом меньше и q 5 не превышают 2 %.

Для котлов мощностью менее 1 МW потери от выстывния определяют опытным путем. Для этого наружную поверхность котла разделяют на части меньшей площадью F i , по середине которой измеряется тепловой поток q i W / m 2 .


Рис. 13.5. Зависимость внешнего выстывания поверхности котла от паропроизводительности котла.
При отсутствии тепломера по середине каждой части поверхности котла замеряют температуру поверхности и теплопотери вычисляют по формуле:

где α – средний коэффициент теплоотдачи от внешней поверхности котла в окружающую среду (воздух) W / m 2 ∙К
Δ t = t F – t õ – средний перепад температур между поверхностью котла и средней температурой воздуха.

А – площадь внешней поверхности котла, состоящая из n частей площадью F i m 2 .


      1. Теплопотери с физическим теплом шлака

где α r – относительное количество удаляемого шлака из топки котла

t r – температура шлака 0 С

c r – удельная теплоемкость шлака kJ/ kg∙K


    1. Горелки твердого топлива

Во многих странах проводят испытания оборудования котлов на твердом топливе с целью автоматицации его работы. Если в качестве топлива используют древесную крошку, то наиболее распростаненная горелка для такого топлива – стокер-горелка.

Рис. 3.6 STOKER – горелка.

Для сжигания гранулированного топлива (пелет) используют специальную горелку EcoTec.

Рис.3.7 Гоерелка EcoTec для сжигания пелет.
Существуют два основных типа пеллетных котлов, первое это котлы со специальными пеллетными горелками (как внешними, так и внутренними) и второе - более простые модели, переделанные, как правило, из опилочно-щепочных котлов, в которых горелка так предмет отсутствует , а сжигание пеллет происходит в топочной арматуре. Первый тип пеллетных котлов, в свою очередь, можно разделить на две подгруппы: встроенные пеллетные горелки и пеллетные горелки, которые можно демонтировать и перевести котёл на другой вид топлива (уголь, дрова).

Итак, сначала давайте проясним, о чём идёт речь.


К первой группе относятся следующие решения на российском рынке котёл Junkers + горелка EcoTec, и прочее. Конструктивно данное решение представляет из себя твердотопливный котёл с установленной в него пеллетной горелкой.

Ко второй группе относятся Фачи и его восточно европейские клоны, Бенеков, и др

Итак, большая разница, как мы видим, в наличии специализированной горелки и некоторая минорная в системе подачи пеллет. Конкретней это выглядит следующим образом:

Чем отличается пеллетная горелка от топочной арматуры

Во-первых, пеллеты на пеллетной горелке горят лучше, чем на топочной арматуре, всё дело в том, что на специализированной пеллетной горелке установлены датчики, влияющие на сжигание пеллет (например, датчик температуры, оптический датчик пламени) и дополнительные активные механизмы (ворошитель золы, система автоподжига) . Усложнение горелки ведёт с одной стороны к более высокому КПД котла в целом , однако, с другой стороны, расплата за это - более сложная (а следовательно и дорогая) система управления.

Во-вторых, подача воздуха в специализированной горелке осуществляет направлено и, как правило, зонально, т.е. существует область подачи первичного воздуха, есть область подачи вторичного воздуха. В обычной топочной арматуре этого нет.

Система подачи пеллет

У пеллетных горелок система подачи пеллет «разбита» на две независимые части, каждый со своим отдельным электромотором – внешний шнек и внутренний шнек , соединённые как правило легкоплавным шлангом , что является дополнительной защитой (помимо основных) от обратного огня.
У котлов переделанных из опилочных пеллеты на топочную арматуру подаётся жестким шнеком.

Из разницы в системе подачи вытекают прочие отличия:


Бункер – в горелках с жестким шнеком размеры бункера ограничен. хотя возможна надстройка существующего бункера. В сисемах с пеллтнными горелками возможно конструирование бункера любого размера.



Образцом пеллетной горелуки объёмного горения может являтся пеллетная горелка шведской фирмы EcoTec.


1.

труба шнека, опускаемая в бункер

7.

стенки котла с теплоносителем

2.

электромотор внешнего шнека

8.

воздуховод

3.

легкоплавкий шланг*

9.

шнек подачи пеллет в зону горения

4.

шнек внутреннего бункера

10.

нагнетатель воздуха

5.

внутренний бункер горелки (дозатор)

11.

зона горения пеллет

6.

лепестковый клапан*

Запуск «холодной» пеллетной горелки


фото 1. Вентилятор


При «холодном» запуске котла, при информации с датчика уровня о наличии пеллет во внутреннем шнеке, и соответственно, в зоне горения, включается система автоподжига. Затем, при фиксации датчиком пламени открытого огня включается максимальная подача воздуха для дальнейшего розжига. После некоторого времени котёл переходит в режим нормальной работы. При неудачном запуске , в зависимости от алгоритма работы горелки, возможны: дополнительная подача пеллет, продувка воздухом и повторное включение системы автоподжига. Существуют модели включающие насос теплоносителя только при достижении заданной температуры и останавливающий его при ее понижении.

При «холодном» запуске котла, при информации с датчика уровня о наличии пеллет во внутреннем шнеке, и соответственно, в зоне горения, включается система автоподжига. Затем, при фиксации датчиком пламени открытого огня включается максимальная подача воздуха для дальнейшего розжига. После некоторого времени котёл переходит в режим нормальной работы. При неудачном запуске, в зависимости от алгоритма работы горелки, возможны: дополнительная подача пеллет, продувка воздухом и повторное включение системы автоподжига. Существуют модели включающие насос теплоносителя только при достижении заданной температуры и останавливающий его при ее понижении.

Режим нормальной работы пеллетной горелки

После розжига, горелка переходит в режим нормальной работы. Предварительно установив требуюмую мощность горелки (например, Вы приобрели горелку мощностью 25 кВт для отопления 150 кв. метров, в этом случае оптимальным будет уменьшение мощности горелки до 10-15 кВт) устанавливается температурный диапазон работы горелки, например, нижняя граница 70 С, а верхняя 85 С. Алгоритм следующий – при достижении температуры теплоносителя верхней границы котел останавливается и переходит в режим stand-by, после чего температура начинает опускаться, затем, при переходе нижней границы, котёл автоматически запускается. Информация об изменении температуры поступает с внешнего датчика температуры, установленного в систему отопления (батареи) или внутреннего датчика котла. Соответственно, чем больше это диапазон, тем более длительные перерывы могу быть между включением/выключение пеллетного котла.

Запуск из режим stand-by

Запуск из режима stand-by происходит при пересечении нижней установленной температурной границы. Основное отличие от процедуры холодного запуска котла, заключается в том , что в этом случае первоначально включается вентилятор, который разжигает тлеющие пеллеты. В отдельных случая возможно включение внутреннего шнека, с целью подачи новых пеллет взамен прогоревших. Система автоподжига может включаться после нескольких попыток неудачного запуска (хотя это говорит пожалуй о том, что со времени остановки котла прошёл значительный период времени и запуск может считаться «холодным»).

Динамическое изменение мощности работы горелки

Под динамическим изменением мощности мы подразумеваем следующую ситуацию, допустим, как в примере выше, Ваша горелка работает в режиме 75% от возможной мощности, т.е. этого достаточно для нормального функционирования системы отопления и обеспечения требуемого комфорта. В случае, например, зимой, понижения температуры окружающей среды, горелка будет длительней достигать верхней границы и быстрей опускаться до нижней, однако настроенной мощности будет хватать для отопления Вашего дома.

Теперь представьте ситуацию, у Вас установлен бойлер для горячей воды, и Вы решили в самую холодную ночь года принять душ одновременно все , в этом случае, падение температуры теплоносителя может быть достаточно резким, и через некоторое время Вы может почувствовать на собственной коже, что Ваш котёл не «вытягивает» нагрузку, несмотря на то, что трудится в пиковом режиме. Вот именно для подобных случаев и применяется система динамического изменения мощности горелки. В этом случае, горелка автоматически увеличит рабочую мощность до 100%, а при достижении требуемой температуры вернётся обратно.

Остановка горелки в штатном режиме

После поступления команды от пульта управления или внешнего выключателя (например GSM modem) отключается внешняя система подачи пеллет, а внутренний шнек подает оставшиеся пеллеты в зону горения, одновременно вентилятор начинает подавать воздум с максимальной скоростью, для скорейшего прогорания оставшихся пеллет. После прохождения заданного периода времени и поступления сигнала об отсутствие пламени пульт управления отключает горелку. Стоит отметить, что при выключении горелки возможно продолжение мониторинга (температуры и пламени для предотвращения возникновения обратного огня) в течение некоторого времени.

Тонкая настройка пеллетной горелки

При наличии дополнительных датчиков пеллетной горелки возможна тонкая настройка её работы.
В качестве регулируемых параметров изменяется скорость подачи пеллет и объём подоваемого воздуха.
В качестве индикаторов используются температурные датчики, лямбда зонд, датчики температуры дымовых газов , датчики давления и т.д.
Оптимальные параметры работы пеллетной горелки определяются исходя из требований клиентов, но, как правило, это наименьший расход топлива.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!