Самодельный генератор газа из воды. Что такое генератор водорода и как его сделать своими руками? Водяной двигатель имеет такое устройство

Гудрон в своем составе имеет следующие нефтепродукты:

Масла, которые остались после процесса перегонки;
- парафиновые, ароматические и нафтеновые углеводороды;
- нефтяные смолы;
- твердые асфальтообразные вещества (карбоиды, асфальтены и карбены);
- кислотные смолистые вещества ( асфальтогеновых кислот);
- незначительное количество примеси металлов, которые присутствовали в нефти.

Свойства гудрона

Характеристика гудрона напрямую зависит от качества используемых нефтепродуктов при перегонке, а также извлеченных при перегонке газойлевых фракций:

Гудрона: 12-55оС;
- плотность вещества: от 0.95 до 1.03 г/см3;
- температура вспышки: от 290 до 350оС;
- коксуемость чистого гудрона: 8-25%.

Применение гудрона

Гудрон широко применяется во многих строительных и производственных отраслях. Наиболее часто востребован в следующих областях:

Производство строительных, дорожных и кровельных битумов;
- строительство дорог и автомагистралей;
- производство малозольного кокса;
- как мягчитель в резиновой и строительной промышленностях.

Гудрон используется для изготовления смазочных масел и является незаменимым в производстве горючих газов. Также не стоит забывать, что гудрон - это один из компонентов топлива.

Побочные отрасли применения гудрона

Гудрон, в котором со значительной долей сохранились масляные составляющие, называется полугудроном. Масляные полугудроны являются концентрированными остатками масляных смесей, которые в последствии с тщательностью очищаются для производства моторных масел наивысшего качества.

Некоторые разновидности полугудронов используются в качестве смазывающего вещества для грубых деталей и механизмов. Качественные и относительно очищенные масляные гудроны нашли свое применение в производстве резины и строительной сфере. Гудроны высокосмолистого содержания могут быть переработаны с помощью гидрогенизации и крекинга в дизельное топливо и бензин.

Также существует кислый гудрон, который является побочным продуктом перегонки светлых масел после очистки парафинов, при производстве дезинфицирующих и моющих средств. Кислые гудроны являются ценными вторичными материальными ресурсами, из которых производят битумные вяжущие высокого качества.

Твердые масла, или баттеры – продукты растительного происхождения, сохраняющие кремообразную или твердую консистенцию в условиях комнатной температуры. При соприкосновении с кожей такие масла плавятся и могут применяться в качестве ухаживающих средств в чистом виде или в составе смеси с жидкими растительными маслами.

Натуральные растительные твердые масла-баттеры

Твердые масла используются для приготовления массажных плиток, мыла ручной работы, в составе сливочных кремов по уходу за лицом, телом, бальзамов для губ и волос. Большинство видов СПА-косметики обогащено твердыми натуральными маслами.

В составе баттеров только натуральные растительные масла с высоким содержанием насыщенных кислот, помогающих сохранить красоту и молодость кожи, восстановить волосы.

В косметических продуктах баттеры применяются в качестве загустителя и биологически активного вещества, позволяющего насытить кожу и волосы питательными веществами, наполнить влагой.

Полностью натуральные твердые масла получают путем прессования растительного сырья без применения химических технологий. Уникальные экзотические тропические баттеры получают из диких и культивированных растений Бразилии, Африки, Индии.

Растительные твердые масла готовят путем смешивания гидрогенизированных и нерафинированных натуральных масел. Получается твердый продукт сливочной консистенции. Усиленное скольжение при нанесении на кожу позволяет пользоваться такими маслами в качестве массажных.

Если хранить твердые масла в жарком помещении, консистенция продукта может измениться и превратиться в мягкую. Это стоит учитывать при транспортировке косметических плиточных масел.

Как применять твердые масла

Для применения твердого масла в чистом виде достаточно отломить небольшой кусочек, подержать его в руках и нанести на кожу массирующими движениями. Особенно такой способ подходит для сухой увядающей кожи.

Купуасу баттер чаще всего используют в качестве заменителя ланолина и эмульгатора. Какао масло вирджини обладает изумительным шоколадным запахом и подходит для устранения целлюлита. Твердое масло манго и ши обладают солнцезащитным фактором и применяются перед солнечными ваннами. Баттер купуасу и ши применяются для ухода за поврежденными волосами.

Масло карите производят из дерева ши. Систематическое применение такого твердого масла значительно замедляет процессы старения, делает кожу бархатистой, мягкой. Какао масло можно использовать при уходе за нежной детской кожей с первого дня жизни. Кокосовое масло применяется при производстве шампуня, бальзама для ухода за волосами. Масло лавра имеет зеленоватый оттенок и обладает мощным антисептическим действием, способствует быстрой регенерации кожных покровов, заживлению небольших ран и ссадин. Масло ним превосходно увлажняет и тонизирует кожу, может использоваться при экземе, псориазе, дерматите.

Мы привыкли считать самым доступным видом топлива природный газ, позволяющий существенно сократить расходы. Но оказывается, у него есть достойная альтернатива — водород, получаемый при расщеплении воды. Исходное вещество для выработки этого топлива мы получаем вообще бесплатно. А если еще и водородный генератор своими руками сделать, экономический эффект будет просто потрясающим. Так ведь?

Желающим собственноручно соорудить генератор дешевого, но весьма продуктивного горючего мы предлагаем обстоятельно изложенную инструкцию. Приводим рекомендации по грамотной эксплуатации. В качестве информативных дополнений, наглядно объясняющих принцип действия, использованы фото-приложения и видео об одном из вариантов сборки генератора.

На уроках химии средней школы когда-то давались пояснения на тот счёт, как получить водород из обычной воды, вытекающей из под крана. Есть в химической сфере такое понятие – электролиз. Именно благодаря электролизу имеется возможность получать водород.

Простейшая водородная установка представляет собой некую ёмкость, заполненную водой. Под слоем воды размещаются два пластинчатых электрода. К ним подводится электрический ток. Так как вода является отличным проводником электрического тока, между пластинами устанавливается контакт с малым сопротивлением.

Проходящий сквозь малое водяное сопротивление ток способствует образованию химической реакции, в результате которой образуется водород.

Схема экспериментальной водородной установки, которая в прежние времена изучалась в программе средней школы на уроках химии. Как выясняется, для практики современных житейских потребностей уроки те не были лишними

Казалось бы, всё просто и остаётся совсем немного – собрать образовавшийся водород, чтобы применить его в качестве энергетика. Но в химии никогда не обходится без тонких деталей. Так и здесь: если водород соединяется с кислородом, при определённой концентрации образуется взрывоопасная смесь. Этот момент является одним из критичных явлений, ограничивающих возможности построения достаточно мощных домашних станций.

Конструкция водородного генератора

Для постройки генераторов водорода своими руками обычно берут в качестве основы классическую схему установки Брауна. Такой электролизёр средней мощности состоит из группы ячеек, каждая из которых содержит группу пластинчатых электродов. Мощность установки определяется общей площадью поверхности пластинчатых электродов.

Ячейки помещаются внутрь ёмкости, хорошо изолированной от внешней среды. На корпус резервуара выводятся патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель подключения электричества.

Аппарат генерации водорода, спроектированный по схеме Брауна. По всем расчётам эта установка вполне должна обеспечить домашнее хозяйство теплом и светом. Другой вопрос – какие габариты и мощности позволят это сделать (+)

Схема генератора Брауна, кроме всего прочего, предусматривает наличие водяного затвора и обратного клапана. За счёт этих элементов организуется защита установки от обратного хода водорода. По такой схеме теоретически не исключается сборка водородной установки, к примеру, для организации отопления загородного дома.

Водородное отопление в доме

Собрать генератор водорода для эффективного отопления дома – затея, может быть не фантастическая, но явно крайне нерентабельная. Для того чтобы получить необходимый объём водорода под домашнюю котельную, потребуется не только мощная электролизная установка, но также значительный объём электрической энергии.

Компенсация затраченного электричества полученным в домашних условиях водородом видится процессом нерациональным.

Реально действующий водородный генератор домашнего назначения. Единственное, что огорчает – это всего лишь экспериментальный вариант, способный разве что показать, как из искры возникает пламя

Тем не менее, попытки решить задачу, как сделать водородный генератор для дома своими руками, не прекращаются. И вот пример одного из пыточных вариантов:

  1. Подготавливается герметичная надёжная ёмкость.
  2. Делаются трубчатые или пластинчатые электроды.
  3. Собирается схема управления рабочим напряжением и током.
  4. Делаются дополнительные модули для рабочей станции.
  5. Подбираются аксессуары (шланги, провода, крепёж).

Естественно, потребуется инструментальный набор, включая специальное оборудование, например, осциллограф и частотомер. Укомплектовавшись всем необходимым, можно приступать непосредственно к изготовлению водородной отопительной установки для дома.

Реализация проекта своими руками

Изначально потребуется сделать ячейку генерации водорода. Топливная ячейка имеет габаритные размеры чуть меньше внутренних размеров длины и ширины корпуса генератора. По высоте размер блока с электродами составляет 2/3 высоты основного корпуса.

Ячейку можно сделать из текстолита или оргстекла (толщина стенки 5-7 мм). Для этого нарезаются по размерам пять текстолитовых пластин. Из них склеивается (эпоксидным клеем) прямоугольник, нижняя часть которого остаётся открытой.

На верхней стороне прямоугольника высверливаются нужное количество мелких отверстий под хвостовики электродных пластин, одно мелкое отверстие для датчика уровня, плюс одно отверстие диаметром 10-15 мм для выхода водорода.

Внутри прямоугольника размещаются платины электродов, контактные хвостовики которых выводят через отверстия верхней пластины за пределы ячейки. Устанавливается датчик уровня воды на отметке 80% заполнения ячейки. Все переходы в текстолитовой пластине (кроме выхода водорода) заливают эпоксидным клеем.

Особенность конструкции модулей изображенного на фото генератора – цилиндрическая форма исполнения. Также по-иному исполнены электроды этого миниатюрного источника энергии

Отверстие выхода водорода нужно оснастить штуцером – закрепить его механически, применяя уплотнение или же вклеить. Собранная ячейка генерации водорода размещается внутри главного корпуса устройства и по верхнему периметру тщательно герметизируется (опять же можно применить эпоксидную смолу).

Таким был выбран корпус генератора водорода для очередного экспериментального проекта. Привлекает простая идея, но вряд ли этот вариант подойдёт для мощной станции, предназначенной под нагрев помещений частного дома

Но перед тем как заложить ячейку внутрь, корпус генератора нужно подготовить:

  • сделать подвод для воды в области днища;
  • изготовить верхнюю крышку с крепежом;
  • подобрать надёжный уплотнительный материал;
  • разместить на крышке электрический клеммник;
  • разместить на крышке водородный коллектор.

В результате должен получиться частично готовый к действию водородный генератор после того, как:

  1. Топливная ячейка загружена в корпус.
  2. Электроды подключены на клеммнике крышки.
  3. Штуцер выхода водорода соединён с водородным коллектором.
  4. Крышка установлена на корпус через уплотнитель и закреплена.

Останется только подключить воду и дополнительные модули.

Дополнения к водородному генератору

Самодельное устройство для получения водорода необходимо дополнить вспомогательными модулями. Например, модулем подачи воды, который функционально объединяется с датчиком уровня, установленным внутри генератора. В простом виде такой модуль представлен водяным насосом и контроллером управления. Насос управляется контроллером по сигналу датчика, в зависимости от уровня воды внутри топливной ячейки.

Дополнительные конструктивные элементы, которые требуется включать в конструкцию любой водородной станции и даже экспериментальной. Без устройств автоматики, контроля и защиты водородный генератор эксплуатировать нельзя

По сути, желательно также иметь устройство, регулирующее частоту электрического тока и уровень напряжения, подаваемых на клеммы рабочих электродов топливной ячейки. Как минимум, электрический модуль должен оснащаться стабилизатором напряжения и защитой от перегрузки по току.

Водородный коллектор, в простейшем его виде, выглядит как трубка, где размещается вентиль, манометр, обратный клапан. От коллектора забор водорода осуществляется через обратный клапан и фактически уже может подаваться к потребителю.

Водородный коллектор и манометрический измерительный прибор – неотъемлемые детали водородной установки, благодаря которым обеспечивается распределение газа и контроль давления

Но на практике всё несколько сложнее. Водород — взрывоопасный газ, имеющий высокую температуру сгорания. Поэтому просто взять и закачать водород в систему отопительного котла в качестве топлива – так сделать не получится.

Критерии качества установки

Собрать качественную эффективную и продуктивную установку в домашних условиях крайне сложно. К примеру, если даже взять в расчёт такой критерий, как металл, из которого делаются электродные пластины или трубки, уже есть риск столкнуться с проблемами.

Долговечность электродов зависит от вида металла и его свойств. Можно, конечно, использовать ту же самую нержавейку, но продолжительность жизни таких элементов будет недолгой.

Некая пародия электродных пластин для генератора водорода. Взяты пластины от обычного переменного конденсатора, которые сделаны из алюминия. Таких электродов хватит ровно на полчаса работы даже в составе малой экспериментальной системы

Существенную роль играют также монтажные размеры. Необходимы расчёты с высокой точностью по отношению к требуемой мощности, качеству воды и прочим параметрам. Так, если величина зазора между рабочими электродами окажется вне расчётного значения, водородный генератор может не функционировать вовсе. В худшем случае мощность, на которую делался расчёт, окажется в несколько раз меньшей.

Даже сечение провода, соединяющего электроды с источником питания, имеет значение в устройстве генератора водорода. Правда, здесь дело касается безопасной эксплуатации устройства. Тем не менее, следует учитывать и эту деталь конструкции в домашнем исполнении.

Возвращаясь к безопасной эксплуатации системы, следует также не забывать о внедрении в конструкцию так называемого водяного затвора, препятствующего обратному движению газа.

Несмотря на довольно внушительное число разработок самодельных генераторов водорода, реально эффективного варианта пока нет. Все модели уступают заводскому оборудованию

Генератор промышленного изготовления

На уровне промышленного производства технологии изготовления водородных генераторов бытового назначения постепенно осваиваются и развиваются. Как правило, выпускаются энергетические станции домашнего применения, мощность которых не превышает 1 кВт.

Такой аппарат рассчитан на выработку водородного топлива в режиме постоянного функционирования не более чем в течение 8 часов. Главное их предназначение – энергоснабжение отопительных систем.

Также разрабатываются и производятся установки под эксплуатацию в составе кондоминиумов. Это уже более мощные конструкции (5-7 кВт), назначение которых не только энергетика отопительных систем, но также выработка электричества. Такой комбинированный вариант быстро набирает популярность в западных странах и в Японии.

Комбинированные водородные генераторы характеризуются как системы с высоким КПД и небольшим выбросом углекислого газа.

Пример реально действующей промышленно изготовленной станции мощностью до 5 кВт. Подобные установки в перспективе планируется делать под оснащение коттеджей и кондоминиумов

Российская промышленность тоже начала заниматься этим перспективным видом добычи топлива. В частности, «Норильский никель» осваивает технологии производства водородных установок, в том числе бытовых. Планируется использовать самые разные типы топливных элементов в процессе разработки и производства:

  • протонно-обменные мембранные;
  • ортофосфорно-кислотные;
  • протонно-обменные метанольные;
  • щелочные;
  • твердотельные оксидные.

Между тем процесс электролиза является обратимым. Этот факт говорит о том, что есть возможность получать уже нагретую воду без сжигания водорода.

Кажется, это очередная идея, ухватившись за которую можно запускать новый виток страстей, связанных с бесплатной добычей топлива для домашнего котла.

Выводы и полезное видео по теме

Экспериментируя дома с самодельными моделями, нужно приготовиться к самым неожиданным результатам, но негативный опыт — это тоже опыт:

Водородные генераторы для дома, изготовленные своими руками, — это пока что проект, существующий на уровне одной идеи. Практически реализованных проектов водородных генераторов своими руками нет, а те, что позиционируются в сети – воображения их авторов или же чисто теоретические варианты. Так что остаётся рассчитывать только на промышленный дорогостоящий продукт, который обещает появиться уже в ближайшем будущем.

Смотря по тому, для каких целей он вам понадобился, генератор водорода, по большому счету, сейчас можно приобрести и в магазине. Но зачастую промышленные варианты таковы, что идеально приспособить их под свои нужды с высокой вероятностью не получится. Модельный выбор весьма ограничен, да и характеристики, в особенности КПД, не позволяют говорить об эффективном использовании. Вдобавок к этому, цена данных изделий, тем более, если речь идет о предназначенных для применения в системе отопления дома, тенденцией к снижению хотя бы до среднего уровня не отличается.

Почему и появилось в сетевых просторах обилие предложений и практических рекомендаций по тому, как сделать такое устройство своими руками, притом в домашних условиях. Каждый автор нередко старается добавить что-то свое, поместить совет по тому или иному нюансу. Многие описывают собственный путь построения доморощенного прибора, внедрения его в топливную систему автомобиля, схему отопления дома и т. п. Так или иначе, дельность любых рекомендаций реально подтвердить лишь на своем опыте. Большинство советов можно сгруппировать в несколько основных тем:

  • поиск схемы, позволяющей с наименьшими затратами и с наибольшей эффективностью вырабатывать газ;
  • подбор материалов, из которых должны изготовляться составные части устройства;
  • выбор реагентов, применяемых для гидролиза;
  • геометрические, электрические и другие параметры компонентов (требования к размерам элементов, источнику питания и т. п.).

Простые самодельные схемы

Если не брать в расчет изощренные и трудновоспроизводимые в домашних условиях агрегаты, а ограничится подручными средствами и материалами, которые можно подыскать не выходя из дома, то выясняется, что сделать своими руками компактный, но эффективный генератор водорода не является неразрешимой задачей. Одна из самых простых схем включает доступные практически каждому компоненты. Вот эти вещи, которые запросто могут заваляться и у вас дома:

  • источник питания (12 В, 1–2 А);
  • стеклянная банка с завинчивающейся металлической крышкой (~0,5 л);
  • бутылка из пластика (~1,0 л);
  • прямоугольная линейка из пластмассы (10–15 см);
  • бритвенные лезвия (пластинчатые, такие бывают в прямоугольных кассетах по 10 шт.);
  • пара медицинских систем-капельниц;
  • соединительные провода (из меди, небольшого сечения);
  • вода и поваренная соль.

Чтобы своими руками сделать из этого набора предметов генератор водорода, потребуется незамысловатый инструмент, как-то канцелярский нож, наждачная бумага, паяльник с соответствующими материалами для пайки, заправленный клеевой пистолет. Начать следует с подготовки лезвий, заключающейся в односторонней зачистке их по неострым краям (2–3 мм) и лужении. Затем на линейку необходимо равномерно (через 3–4 мм) нанести засечки-пазы. В них будут размещены лезвия.

Следует иметь в виду, что увеличение расстояния между пазами повлечет за собой больший ток потребления и, соответственно, потребуется мощнее и источник питания.

Каждое лезвие должно располагаться перпендикулярно основной плоскости линейки. Они фиксируются на ней при помощи клея так, чтобы исключался электрический контакт. Визуально получается своеобразная ребристая батарея отопления в миниатюре. После того как клей подсохнет, необходимо дополнить полученную конструкцию проводными соединениями. Попросту говоря, требуется подсоединить к одному проводу все нечетные лезвия, а к другому – все четные (подобно тому, как это производится с пластинами внутри аккумуляторов).

Далее, в металлической крышке следует выполнить отверстия под эту пару питающих проводов, и еще одно, побольше – под выход водорода (диаметр уточняется по размеру фильтра капельницы, который и будет вмонтирован в крышку). Линейку с лезвиями можно закрепить здесь же, на свободной внутренней плоскости крышки. Все сделанные отверстия после пропускания через них проводов и капельницы необходимо залить клеем, зафиксировав данные элементы. Так, чтобы крышка после завинчивания закрывала объем банки совершенно герметично.

Пластиковую бутылку необходимо оборудовать так, чтобы она выполняла функцию барботера-гидрозатвора (их может быть и больше одного). Шланг от стеклянной банки, пропущенный через крышку, должен почти достигать дна бутылки. Соответственно, второй шланг для отведения водорода располагается в верхней части. Место пропускания соединителей в крышке также должно быть загерметизировано.

Теперь нужно налить воды в бутылку (не до самого верха) и банку, насыпать в последнюю несколько ложек соли и размешать. После этого остается плотно закрыть крышки и приступить к тестированию этого созданного своими руками мини-генератора. Вскоре после включения источника питания в сеть вы сможете наблюдать процесс гидролиза и выделение водорода. Его должно быть достаточно, чтобы при поднесении зажженной зажигалки к кончику иглы, расположенной на выходном шланге, пламя подхватилось этой маленькой горелкой. Разумеется, это всего лишь макет, демонстрирующий принципиальную возможность создать в домашних условиях такой прибор.

Для серьезных целей типа отопления дома или газорезки металла вам, конечно, потребуется его масштабировать. Вместо лезвий взять более крупные полноценные пластины, вместо банки с бутылкой соответствующие емкости и т. д. Другие популярные схемы, которые также можно сделать своими руками в домашних условиях (в крайнем случае в гаражных), в принципиальном устройстве все аналогичны описанной. Могут браться емкости разной формы и из различных материалов, в качестве реактивов могут выступать соединения металлов, щелочи и кислоты и т. п. Словом, простора для экспериментов предостаточно.

Куда направить

В зависимости от того, какие цели вы себе поставите, как тонко и глубоко освоите предложенные умельцами к выполнению своими руками схемы, насколько зайдете в своих экспериментах далеко, зависит то, как и где можно будет применять результаты вашего труда. В целом основных направлений несколько:

  • газорезка металла;
  • обогащение топлива в автомобиле;
  • отопление в доме.

Практика отчаянных автомобилистов показывает, что данные устройства, в том числе сделанные своими руками, могут быть весьма эффективны как в плане экономии топлива, так и в части снижения уровня вредных веществ в выхлопах. А в последнее время на просторах блогов и форумов горячо обсуждается и довольно новое применение таким изделиям – в системах отопления. Это находит воплощение, преимущественно, как дополнение к основным приборам.

Например, теплый пол или стены. Создавая своими руками в домашних условиях такой прибор, как генератор водорода, потрудитесь позаботиться об элементарных правилах безопасности. Если он предназначается для системы отопления, то должен рассчитываться на круглосуточную эксплуатацию. В особенности это актуально, если вы решите использовать в качестве реагентов небезобидные химические соединения.

Водород практически идеальный вид топлива, но проблема заключается в том, что он на нашей планете встречается только в виде соединений с другими химическими элементами. Доля «чистого» вещества в атмосфере составляет не более 0,00005%. Учитывая такие реалии, становится актуальным вопрос о водородном генераторе. Рассмотрим принцип работы такого устройства, его конструктивные особенности, сферу применения и возможность самостоятельного изготовления.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H 2 O→2NaOH + Cl 2 + H 2 . В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н 2 О + С ⇔ СО + H 2 .
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН 4 + Н 2 О ⇔ СО + 3Н 2 . Второй вариант – окисление метана: 2СН 4 + О 2 ⇔ 2СО + 4Н 2 .
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.

Конструктивные особенности и устройство генератора водорода

Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.

Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.


Обозначения:

  • А – трубка для отвода хлора (Cl 2).
  • B – отвод водорода (Н 2).
  • С – анод, на котором происходит следующая реакция: 2CL – →CL 2 + 2е – .
  • D – катод, реакцию на нем можно описать следующим уравнением: 2Н 2 О + 2е – →Н 2 + ОН – .
  • Е – раствор воды и хлористого натрия (Н 2 О & NaCl).
  • F – мембрана;
  • G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
  • H – отвод рассола и разбавленной каустической соды.
  • I – ввод насыщенного рассола.
  • J – крышка.

Конструкция бытовых генераторов значительно проще, поскольку в большинстве своем они не вырабатывают чистый водород, а производят газ Брауна. Так принято называть смесь кислорода и водорода. Этот вариант наиболее практичен, не требуется разделять водород и кислород, то можно значительно упростить конструкцию, а значит и сделать ее дешевле. Помимо этого полученный газ сжигается по мере его выработки. Хранить и накапливать его в домашних условиях не только проблематично, но и небезопасно.


Обозначения:

  • а – трубка для отвода газа Брауна;
  • b – впускной коллектор подачи воды;
  • с – герметичный корпус;
  • d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
  • e – вода;
  • f – датчик уровня воды (подключается к блоку управления);
  • g – фильтр водоотделения;
  • h – подвод питания, подаваемого на электроды;
  • i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
  • j – предохранительный клапан;
  • k – отвод газа с предохранительного клапана.

Характерная особенность таких устройств – использование блоков электродов, поскольку не требуется сепарирование водорода и кислорода. Это позволяет сделать генераторы довольно компактными.


Сферы применения водородного генератора

Ввиду проблем, связанных с транспортировкой и хранением водорода, такие устройства востребованы в производствах, где наличие этого газа требует технологический цикл. Перечислим основные направления:

  1. Производства, связанные с синтезом хлороводорода.
  2. Изготовление топлива для ракетных двигателей.
  3. Создание удобрений.
  4. Производство нитрида водорода (аммиака).
  5. Синтез азотной кислоты.
  6. В пищевой промышленности (для получения твердых жиров из растительных масел).
  7. Обработка металла (сварка и резка).
  8. Восстановление металлов.
  9. Синтез метилового спирта
  10. Изготовление соляной кислоты.

Несмотря на то, что производство водорода в процессе переработки нефти дешевле, чем его получение путем электролиза, как уже указывалось выше, возникают сложности с транспортировкой газа. Строить опасные химические производства, непосредственно, рядом с перерабатывающими нефть заводами не всегда позволяет экологическая обстановка. Помимо этого водород, полученный путем электролиза, значительно чище, чем при крекинге нефти. В связи с этим на промышленные водородные генераторы всегда высокий спрос.

Бытовое применение

В быту также есть применение водороду. В первую очередь это автономные отопительные системы. Но здесь некоторые особенности. Установки по производству чистого водорода стоят значительно дороже, чем генераторы газа Брауна, последние даже можно собрать самостоятельно. Но при организации отопления дома необходимо учитывать, что температура горения газа Брауна значительно выше, чем у метана, поэтому потребуется специальный котел, который несколько дороже обычного.


В интернете можно встретить немало статей, в которых написано, что для гремучего газа можно использовать обычные котлы, это делать категорически нельзя. В лучшем случае они быстро выйдут из строя, а в худшем могут стать причиной печальных или даже трагических последствий. Для смеси Брауна предусмотрены специальные конструкции с более термостойким соплом.

Необходимо заметить, что рентабельность отопительных систем на основе водородных генераторов вызывает большое сомнение ввиду низкого КПД. В таких системах имеются двойные потери, во-первых, в процессе генерации газа, во-вторых, при нагреве воды в котле. Дешевле для отопления сразу нагревать воду в электрическом бойлере.

Не менее спорная реализация для бытового использования, при которой газом Брауна обогащают бензин в топливной системе двигателя автомобиля с целью экономии.


Обозначения:

  • а – генератор ННО (принятое обозначение для газа Брауна);
  • b – отвод газа в камеру сушки;
  • с – отсек для удаления водяных паров;
  • d – возвращение конденсата в генератор;
  • е – подача осушенного газа в воздушный фильтр топливной системы;
  • f – автомобильный двигатель;
  • g – подключение к аккумулятору и электрогенератору.

Нужно заметить, что в некоторых случаях такая система даже работает (если ее собрать правильно). Но точные параметры, коэффициент прироста мощности, процент экономии вы не найдете. Эти данные сильно размыты, и достоверность их вызывает сомнения. Опять же не ясен вопрос, насколько уменьшится ресурс двигателя.

Но спрос порождает предложения, в интернетах можно найти подробные чертежи таких приспособлений и инструкцию по их подключению. Есть и готовые модели, сделанные в стране Восходящего Солнца.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.


Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Содержание

Развитие технологий привело к замене классических дровяных печек на котельные агрегаты. В качестве топлива, помимо дров и угля стали использоваться газ, масло, солярка и даже электричество. В последнее время энергию для автономных отопительных систем дополнительно получают с помощью солнечных батарей и геотермальных установок. Учитывая, что неиссякаемым источником энергии является водород, можно попробовать собрать водородный генератор своими руками для получения экологичного топлива.

Водородный генератор своими руками

Принцип работы устройства

Водородный генератор для отопления считается перспективной разработкой, поскольку получать горючее с высокой теплотворной способностью можно из обычной воды. Главная задача - получить чистый водород максимально простым и дешевым способом.

Получение водорода

Традиционно для этих целей используется метод электролиза. Его суть в следующем: в воду, недалеко друг от друга, помещают металлические пластины, которые подключены к источнику высокого напряжения. Вода проводит электрический ток, поэтому при подаче электроэнергии молекулу воды разрывает на составляющие. Высвобождение из каждой молекулы двух атомов водорода и одного атома кислорода позволяет получить так называемый газ Брауна с формулой ННО.

Теплотворная способность газа Брауна составляет 121 МДж/кг. При горении вещества не образуется вредных веществ, а для того, чтобы его использовать в качестве энергоносителя для отопления дома достаточно немного модернизировать стандартный газовый котел. Однако при создании установки для получения водорода своими руками особое внимание следует уделить мерам безопасности - при соединении водорода с кислородом образуется гремучая смесь.

Конструкция генератора

Электролизер, установка для выработки газа Брауна путем электролиза воды в больших объемах, состоит из нескольких ячеек, в которые вмонтированы металлические пластинчатые электроды. Чем больше суммарная площадь поверхности электродов, тем мощнее установка.

Ячейки находятся в герметичной емкости, которая оснащена патрубком для подключения к источнику воды, патрубком для отвода полученного газа, клеммами для подсоединения электропитания. Также генератор снабжен водяным затвором, предотвращающим контакт водорода с кислородом, и защитным клапаном для предотвращения эффекта обратного пламени - газ сгорает только в горелочном устройстве.


Принцип работы водородного генератора

Водородное отопление

Водородное отопление дома требует использования установки с большой площадью электродов, иначе отопительный котел не сможет эффективно нагревать теплоноситель. Применять обычный электролизер, нарастив его габариты, нерентабельно, поскольку на получение водорода будет тратиться больше электроэнергии, чем ушло бы на работу отопительного электрокотла для обогрева дома такой же площади.

Ведутся разработки более эффективных установок для получения водородного топлива без лишних энергозатрат. Известна история американского изобретателя Стенли Мейера, который создал «водородную ячейку», потребляющую в десятки раз меньше электроэнергии по сравнению с традиционными установками. Однако ученому не удалось совершить переворот в современных технологиях - он скоропостижно скончался от отравления, а чертежи установки исчезли.

Над созданием водородного генератора с попытками реализовать идею Мейера трудятся и в технических лабораториях, и в мастерских домашних умельцев во всем мире. Изобретение американского ученого заключалось в создании резонанса раскачивающейся молекулы воды с электрическими импульсами - в этом случае она расщепляется на атомы без использования высокого электрического напряжения.

Радужные перспективы

Водород - крайне перспективный энергоноситель по целому ряду причин :

  1. Он в наличии во всей Вселенной, на Земле занимает десятое место по степени распространенности - энергоресурс можно назвать неисчерпаемым.
  2. Газ не токсичен, не способен причинить вред живым организмам. Важно лишь предпринимать меры безопасности, чтобы исключить утечку с образованием «гремучей смеси» водорода с кислородом.
  3. Продукт горения водорода - обычный водяной пар.
  4. Энергоноситель отличается высокой теплоемкостью, температура горения составляет 3000°С.
  5. При утечке газа он быстро улетучится, не причинив никакого вреда, поскольку в 14 раз легче воздуха. Но поблизости не должно быть открытого огня или искрящей проводки, иначе гремучая смесь взорвется.
  6. Кубический метр водорода обладает теплотворной способностью 13000 Дж.

Преимущества водородного отопления

Водород как энергоноситель - сфера применения

Водород высоко оценивается как энергоноситель и активно используется, к примеру, в качестве топлива для космических ракет. Используются разные способы его получения в промышленных масштабах. В основном это газификация угля или нефтепродуктов, конверсия метана и его гомологов. Такой дешевый водород нельзя рассматривать как экологичное топливо, поскольку его добыча связана с вредными выбросами в атмосферу. Электролиз воды для получения водорода в больших объемах, применяется только в Норвегии, где имеется избыток дешевой электроэнергии.

Компактный электрический газогенератор нашел применение в сфере газорезки. Оборудование, производящее водород, удобнее в использовании по сравнению с баллонным газом - нет необходимости транспортировать тяжелые баллоны, зависеть от поставок сжиженного газа и т.д. Но в угоду удобству была принесена экономия - для электролитического процесса требуется достаточно много электроэнергии, в итоге стоимость энергоносителя существенно возрастает. При этом разница в стоимости купленного и произведенного водорода во многом компенсируется отсутствием затрат на его доставку.

Водородные отопительные котлы

На многих сайтах, посвященных системам отопления, можно встретить информацию о том, что водород составляет достойную конкуренцию природному газу в качестве энергоносителя для отопительного котла. Упор делается на то, что смонтировав генератор водорода, вы получаете возможность тратить на отопление не больше средств, чем на газовое, при этом не придется оформлять множество документов и платить серьезные суммы за подключение дома к центральной газовой сети.

На основании вышеизложенного в статье можно сделать выводы, что себестоимость водорода низка только при его промышленном производстве. То есть, получение топлива электролизом заведомо обойдется дороже, и ориентироваться на завлекательные цифры стоимости килограмма сжиженного водорода не имеет смысла.

Рассмотрим котельное оборудование, представленное на рынке. Выпуском водородных котлов занимается итальянская компания Giacomini, которая специализируется в сфере альтернативной энергетики. Также аналогичные агрегаты изготавливают некоторые китайские компании, успешно скопировавшие технологию.


Водородный котел на твердом топливе

Разработки компании Giacomini направлены на создание отопительного оборудования, которое было бы полностью безопасно для окружающей среды.

Водородный котел этой компании относится к указанной категории - его работа связана с выделением водяного пара, какие-либо вредные выбросы отсутствуют. В качестве энергоносителя используется водород, при этом его добывают путем электролиза.

Однако стоит обратить особое внимание на принцип действия этого котла. Полученный в системе водород не сжигается, он вступает в реакцию с кислородом в присутствии катализатора. В результате выделяется тепловая энергия, которой достаточно для нагрева отопительного контура до 40°С.

То есть, водородные котлы, которые предлагается приобрести по солидной цене, подходят лишь для использования в качестве теплогенератора для контура водяного пола, плинтусного или потолочного отопления.

Можно сделать вывод, что мировые производители котельного оборудования не нашли приемлемого технического решения, чтобы создать эффективный отопительный котел, способный использовать тепловую энергию сжигаемого водорода. Или рассчитали, что такой вариант нерентабелен.

Изготовление генератора собственными силами

В сети Интернет можно найти немало инструкций, как сделать водородный генератор. Следует отметить, что собрать такую установку для дома своими руками вполне реально - конструкция достаточно проста.


Компоненты водородного генератора своими руками для отопления в частном доме

Но что вы будете делать с полученным водородом? Еще раз обратите внимание на температуру горения этого топлива в воздухе. Она составляет 2800-3000°С. Если учесть, что при помощи горящего водорода режут металлы и другие твердые материалы, становится понятно, что установить горелку в обычный газовый, жидкотопливный или твердотопливный котел с водяной рубашкой не получится - он попросту прогорит.

Умельцы на форумах советуют выложить топку изнутри шамотным кирпичом. Но температура плавления даже лучших материалов данного типа не превышает 1600°С, долго такая топка не выдержит. Второй вариант - использование специальной горелки, которая способна понизить температуру факела до приемлемых величин. Таким образом, пока не найдете такую горелку, не стоит начинать монтировать самодельный водородный генератор.

Решив вопрос с котлом, выберите подходящую схему и инструкцию на тему, как сделать водородный генератор для отопления частного дома.

Самодельное устройство будет эффективным только при условии :

  • достаточной площади поверхности пластинчатых электродов;
  • правильного выбора материала для изготовления электродов;
  • высокого качества жидкости для электролиза.

Какого размера должен быть агрегат, генерирующий водород в достаточных количествах для отопления дома, придется определять «на глазок» (на основании чужого опыта), либо собрав для начала небольшую установку. Второй вариант практичнее - он позволит понять, стоит ли тратить деньги и время на монтаж полноценного генератора.

В качестве электродов в идеале используются редкие металлы, но для домашнего агрегата это слишком дорого. Рекомендуется выбрать пластины из нержавеющей стали, желательно ферромагнитной.


Конструкция водородного генератора

К качеству воды предъявляются определенные требования. Она не должна содержать механические загрязнения и тяжелые металлы. Максимально эффективно генератор работает на дистиллированной воде, но для удешевления конструкции можно ограничиться фильтрами для очистки воды от ненужных примесей. Чтобы электрическая реакция протекала интенсивнее, в воду добавляют гидроксид натрия в соотношении 1 столовая ложка на 10 л воды.

Экономический вопрос

Прежде чем начать подробно разбираться, как сделать водородный генератор, желательно вспомнить школьный курс физики. Все преобразования происходят с потерей энергии, то есть, затраты электроэнергии на получение водорода не окупятся тепловой мощностью при сжигании полученного топлива.

Если учесть, что сжигать водород с максимальной температурой и теплоотдачей в домашних условиях попросту невозможно, становится понятным, что реальные потери будут даже выше тех, что рассчитаны для идеальных условий.

Итак, использовать водородный генератор, сделанный для отопления своими руками, не имеет никакого смысла, если у вас нет доступа к бесплатной электроэнергии. Установить для отопления дома электрический котел и тратить электроэнергию напрямую, без сложных преобразований, обойдется вам в 2-3 раза дешевле. Кроме того, электрокотел полностью безопасен, а эксплуатация кустарной установки грозит взрывом при несоблюдении правил монтажа и эксплуатации.

Очевидно, что получение дешевого водорода экологически чистым способом, к которым относится электролиз, - это вопрос будущего, над которым сегодня работают ученые в передовых странах мира.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!