Прибор погодного регулирования подачи тепла. Автоматика погодного регулирования со смесительным клапаном

Довольно часто люди, проживающие в Москве или прибывшие на некоторое время в столицу, пытаются разобраться в структуре местного метро. Им трудно сразу понять, это какая ветка - радиальная, и почему ее так называют.

В нашей статье мы дадим ответы на данные вопросы. Кроме того, ниже будет представлен перечень станций, которые являются таковыми.

Где находится

Практически только в московском метро можно услышать слово «радиальная», если речь идет о конкретной станции. Дело в том, что в столичной подземке существует Кольцевая линия. На схемах метро прошлых лет она отмечена как геометрическая окружность коричневого цвета. Но ведь помимо нее существуют и другие линии, которые пересекают ее.

Стоит ненадолго углубиться в историю, чтобы понять, откуда появились данные ветки (радиальные), какие это станции. Первым делом в 1935 году построили ("Парк Культуры" - "Сокольники"), затем началось строительство Замоскворецкой линии, далее со временем появились остальные ветки. Кстати, даже в настоящее время на карте метро, а также в современных поездах с электронным табло над дверями можно увидеть цифры, обозначающие номер линии (ветки). Нумерация выбрана не случайно. Она как раз и означает хронологическую последовательность строительства.

Кольцевая линия - пятая по счету. Она стала, по сути, пересадочной. И у каждой станции на этой линии есть пересадочный узел (соседние станции, относящиеся к другим линиям). Именно они и являются радиальными. Какая ветка метро пересекается с Кольцевой, будет рассказано чуть ниже.

Почему «радиальная»

Почему придумали такой странный термин - «радиальная», и почему этим словом пользуются москвичи? Дело в том, что оно используется по причине наличия радиуса у Кольцевой линии. То есть, как говорилось ранее, данная ветка - это окружность. А у любой окружности всегда есть радиус, то есть расстояние от ее центра до любого края. И как раз на этих краях расположены пересадочные станции. Отсюда и появился термин «радиальная».

Например, едет пассажир с "Выхино" на станцию "Таганская-радиальная", какая ветка, он не знает. Ему нужно попасть на "Павелецкую-Кольцевую". И, разумеется, знающие люди ему объяснят, что нужно доехать до «Таганки», а там с радиальной перейти на «Кольцо». То есть на Таганско-Краснопресненской линии станция «Таганская» является радиальной.

Какие станции

Чтобы было проще понять, какие же станции радиальные, какие это ветки метро, стоит рассмотреть их полный перечень, начиная со станции «Парк Культуры» Сокольнической линии и по часовой стрелке:

  • «Парк Культуры» Сокольнической;
  • «Киевская» Арбатско-Покровской;
  • «Киевская» Филевской;
  • «Баррикадная» Таганско-Кранопресненской;
  • «Белорусская» Замоскворецкой;
  • «Менделеевская» Серпуховско-Тимирязевской;
  • «Проспект Мира» Калужско-Рижской;
  • «Комсомольская» Сокольнической;
  • «Курская» Арбатско-Покровской;
  • «Чкаловская» Люблинской;
  • «Таганская» Таганско-Кранопресненской;
  • «Марксистская» Калининской;
  • «Павелецкая» Замоскворецкой;
  • «Серпуховская» Серпуховско-Тимирязевской;
  • «Октябрьская» Калужско-Рижской.

У каждой ветки имеется свое цветовое обозначение. Кольцевая же линия, мы повторимся, с самого начала своего существования имеет коричневый цвет.

Как не запутаться в переходах

Нужно сразу отметить, что официально слово «радиальная» не используется. Информатор в поездах применяет другие фразы, например, по приезду на станцию «Комсомольская» Кольцевой линии, информатор поезда объявит: «Станция «Комсомольская». Переход на Сокольническую линию». Точно также и с указателями. Нет нигде фразы «переход на радиальную», вместо нее, например: «Переход на Арбатско-Покровскую линию».

Для удобства используется цветная схема. Москвичи, часто пользующиеся подземкой, знают, какого цвета радиальные ветки. Для гостей и людей, редко пользующихся метрополитеном, мы можем сделать подсказку.

Название линии

Цвет

Сокольническая

Замоскворецкая

темно-зеленая

Арбатско-Покровская

темно-синяя

Филевская

Кольцевая

коричневая

Калужско-Рижская

оранжевая

Таганско-Краснопресненская

фиолетовая (сиреневая)

Калиниская

Люблинская

салатовая

Серпуховско-Тимирязевская

Московский метрополитен - достаточно сложный транспортный объект. По-началу новичку будет очень сложно сориентироваться. Поэтому желательно всегда при себе иметь схему или напечатанную, или в качестве приложения на смартфоне.

В заключение хочется отметить одну очень частую ошибку. Иногда, по незнанию, люди спрашивают: что же такое "радиальная", какая это ветка? А понятие "радиальная", как вы убедились, относится к пятнадцати станциям, перечисленным выше. Поэтому нужно знать, о какой из них идет речь.

Основные особенности и область применения радиальных, магистральных, кольцевых и смешанных схем электрических сетей.

В распределительных электрических сетях применяются следующие основные типы схем: радиальные, магистральные, кольцевые (петлевые) и их комбинации.

Радиальная схема выполняется с помощью кабелей и проводов с применением распределительных шкафов с автоматическими выключателями или предохранителями. При радиальной схеме питания от ТП отходят отдельные линии к крупным электроприемникам или распределительным пунктам, питающим мелкие электроприемники. Эту схему питания применяют при наличии в цехе относительно мощных ЭП или, в случае когда мелкие ЭП сосредоточены группами на отдельных участках цеха.

Достоинства схемы: 1) возможность обеспечения селективной защиты; 2) возможность применения цифровой автоматики; 3) высокая надежность.

Недостатки схемы: 1) большая длина линий; 2) большой расход цветного металла; 3) большое количество защитной и коммутационной аппаратуры; 4) дороговизна; 5) большое количество присоединений в РУ 0,4 кВ ТП, что приводит к увеличению строительной части; 6) большие потери электроэнергии.

Радиальные схемы применяются для электроснабжения потребителей I и II категории, рекомендуются для предприятий черной, цветной и химической промышленностей.

Магистральные схемы находят широкое применение при равномерном распределении большого числа мелких электроприемников, таких, например, как металлорежущие станки в цехах механической обработки металлов.

При магистральной схеме питания, питающие или главные магистрали подключают к распределительным щитам низшего напряжения ТП или к выводам низшего напряжения трансформатора при использовании блоков трансформатор-магистраль. Распределительные магистрали, к которым непосредственно подключают ЭП, получают питание от главных питающих магистралей или от распределительных щитов низшего напряжения ТП, если главные магистрали не применяются. Троллейные линии для питания подъемных кранов и других передвижных механизмов подключают к главным питающим магистралям или к щитам низшего напряжения подстанции.

Достоинства: высокая надежность элементов схемы; малое число присоединений; уменьшение строительной части подстанции; универсальность и гибкость схемы (малое изменение сети при изменении расположение технологического оборудования); меньшие потери электроэнергии.

Недостатки: меньшая надежность по сравнению с радиальными схемами; трудность в обеспечение селективности защиты.

Учитывая особенности магистральных и радиальных сетей, а также характер производства, условия окружающей среды и другие условия обычно применяют смешанные схемы силовых электрических сетей.

в)

Рис.а)-магистральная схема рис.б)-радиальная рис.в)-кольцевая

Maгистральная линия (рис. а) предназначена для питания нескольких потребителей, расположенных в одном направлении. Недостаток такой сети - в низкой надежности. При аварии на головном участке ЦП1 и его отключении отключаются все потребители, питающиеся от одной магистрали. При аварии на промежуточном участке отключаются все потребители, расположенные за этим участком. Например, при отключении участка 1 необходимо отключение потребителей 2 и 3. В радиальной сети (рис. б) каждый потребитель питается по-своему радиальному участку сети. Например, потребитель 1 питается по участку ЦП1, потребитель 2 - по участку ЦП2 и т. д.

Кольцевые (петлевые) конфигурации схем распределительных электрических сетей применяются как при воздушных, так и при кабельных линиях. Характерным для таких электрических сетей 6-10 и 0,38 кВ является применение одноцепных линий, однотрансформаторных подстанций и односекционных распределительных щитов 380 В вводов к ПЭ. В связи с замкнутой конфигурацией схем данного типа в нормальных эксплуатационных режимах сети одна из линий должна быть отключена. Необходимость такого режима сети определяется невозможностью избирательного (селективного) отключения поврежденной линии. Последнее определяется отсутствием (по технико-экономическим соображениям) линейных выключателей в цепях всех линий, кроме их головных участков, а также практической невозможностью применения в таких сетях релейных защит направленного действия. Выбор линии, отключенной в нормальных режимах сети, производится по условиям потокораспределения, соответствующего минимальным потерям мощности при наибольших нагрузках ПЭ

При радиальных схемах по каждой линии питается один ПЭ. Линии могут быть одноцепными или двухцепными в зависимости от требований надежности электроснабжения конкретных ПЭ, а также от конструктивного выполнения линий. По одноцепным воздушным линиям могут питаться ПЭ, допускающие перерывы питания на время ремонта линии и относящиеся к III категории по требованиям ПУЭ к надежности электроснабжения. Ввиду длительности ремонтных работ после повреждения кабеля (например, в случае необходимости прогрева грунта в зимнее время) радиальные линии необходимо выполнять двухцепными при питании потребителей всех категорий. Потребители электроэнергии I и II категорий, во всех случаях должны питаться по двухцепным радиальным линиям. При одноцепных воздушных радиальных линиях 6-10 кВ трансформаторные подстанции 6-10/0,38 кВ выполняются однотрансформаторными в связи с существенно меньшей их повреждаемостью по сравнению с линиями. При двухцепных радиальных линиях ТП 6-10/0,38-0,66 кВ - двухтрансформаторные. Области применения радиальных схем: электроснабжение единичных ПЭ; при значительных электрических нагрузках ПЭ - в связи с ограничениями пропускной способности линий по условиям допустимого нагрева проводов или жил кабелей или по допустимой потере напряжения в линии и т.п. (для линий 380 В - 150-200 кВ · А, для линий 10 кВ - 5-6 MB · А).

В соответствии с требованиями нормативной документации и ФЗ №261 "Об энергосбережении…" должна стать нормой, как для объектов нового строительства, так и для существующих зданий, так как это является основным инструментом управления теплоснабжением. Сегодня такие системы, вопреки сложившемуся мнению, вполне доступны для большинства потребителей. Они функциональны, обладают высокой надежностью и позволяют оптимизировать процесс потребления тепловой энергии. Срок окупаемости затрат на установку оборудования находится в пределах одного года.

Система автоматического регулирования теплопотребления () позволяет снизить потребление тепловой энергии за счет следующих факторов:

  1. Устранения поступления в здание избытков тепловой энергии (перетопов);
  2. Снижения температуры воздуха в ночное время;
  3. Снижения температуры воздуха в праздничные дни.

Укрупненные показатели экономии тепловой энергии от применения САРТ, установленного в индивидуальном тепловом пункте () здания представлены рис. №1.

Рис.1 Общая экономия достигает 27% и более*

*по данным ООО НПП “Элеком”

Основные элементы классической САРТ в общем виде показаны на рис. №2.

Рис.2 Основные элементы САРТ в ИТП*

*вспомогательные элементы условно не показаны

Назначение погодного контроллера:

  1. Измерение температур наружного воздуха и теплоносителя;
  2. Управление клапаном КЗР в зависимости в соответствии с заложенными программами (графиками) регулирования;
  3. Обмен данными с сервером.

Назначение подмешивающего насоса:

  1. Обеспечение постоянного расхода теплоносителя в системе отопления;
  2. Обеспечение переменного подмеса теплоносителя.

Назначение клапана КЗР: управление поступлением теплоносителя из тепловой сети.

Назначение датчиков температуры: измерение температур теплоносителя и наружного воздуха.

Дополнительные опции:

  1. Регулятор перепада давления. Регулятор предназначен для поддержания постоянного перепада давления теплоносителя и позволяет исключить отрицательное влияние нестабильного перепада давления тепловой сети на работу САРТ. Отсутствие регулятора перепада давления может привести к неустойчивому функционированию системы, снижению экономического эффекта и срока службы оборудования.
  2. Датчик температуры воздуха в помещении. Датчик предназначен для контроля температуры воздуха внутри помещения.
  3. Сервер сбора данных и управления. Сервер предназначен для удаленного контроля работоспособности оборудования и коррекции отопительных графиков по показаниям датчиков температуры воздуха внутри помещения.

Принцип работы классической схемы САРТ состоит в качественном регулировании, дополненном количественным регулированием. Качественное регулирование - это изменение температуры теплоносителя, поступающего в систему отопления здания, а количественное регулирование - это изменение количества теплоносителя, поступающего из тепловой сети. Происходит этот процесс таким образом, что количество теплоносителя, поступаемого из тепловой сети, меняется, а количество теплоносителя, циркулирующего в системе отопления, остается постоянным. Таким образом, сохраняется гидравлический режим системы отопления здания и происходит изменение температуры теплоносителя, поступающего в отопительные приборы. Сохранение гидравлического режима постоянным является необходимым условием для равномерного прогрева здания и эффективной работы системы отопления.

Физически процесс регулирования происходит так: погодный контроллер, в соответствии с заложенными в него индивидуальными программами регулирования и в зависимости от текущих температур наружного воздуха и теплоносителя, подает управляющие воздействия на клапан КЗР. Приходя в движение, запорный орган клапана КЗР уменьшает или увеличивает расход сетевой воды из тепловой сети по подающему трубопроводу до узла смешения. Одновременно с этим, за счет насоса в узле смешения, производится пропорциональный отбор теплоносителя из обратного трубопровода и подмешивание его в подающий, что при сохранении гидравлики системы отопления (количества теплоносителя в системе отопления) приводит к требуемым изменениям температуры теплоносителя, поступающего в радиаторы отопления. Процесс снижения температуры поступающего теплоносителя, уменьшает количество тепловой энергии, которая отбирается в единицу времени от радиаторов отопления, что и приводит к экономии.

Схемы САРТ в ИТП зданий у разных производителей могут непринципиально отличаться, но во всех схемах основными элементами являются: погодный контроллер, насос, клапан КЗР, датчики температуры.

Хочется отметить, что в условиях экономического кризиса все большее количество потенциальных заказчиков становятся чувствительными к цене. Потребители начинают искать альтернативные варианты с наименьшим составом оборудования и стоимостью. Иногда на этом пути возникает ошибочное желание сэкономить на установке подмешивающего насоса. Такой подход не оправдан для САРТ, монтируемых в ИТП зданий.

Что произойдет если не установить насос? А произойдет следующее: в результате работы клапана КЗР гидравлический перепад давления и, соответственно, количество теплоносителя в системе отопления будут постоянно меняться, что неизбежно приведет к неравномерному прогреву здания, неэффективной работе отопительных приборов и риску остановки циркуляции теплоносителя. Кроме этого, при отрицательных температурах наружного воздуха может произойти “размораживание” системы отопления.

Экономить на качестве погодного контроллера так же не стоит, т.к. современные контроллеры позволяют выбирать такой график управления клапаном, который при сохранении комфортных условий внутри объекта, позволяет получить значительные объемы экономии тепловой энергии. Сюда входят такие эффективные программы управления теплопотреблением как: устранение перетопов; снижение потребления в ночные часы и нерабочие дни; устранение завышения температуры обратной воды; защита от “размораживания” системы отопления; коррекция отопительных графиков по температуре воздуха в помещении.

Подводя итог сказанному, хочется отметить важность профессионального подхода к выбору оборудования системы погодного автоматического регулирования теплопотребления в ИТП здания и еще раз подчеркнуть, что минимально достаточными основными элементами такой системы являются: насос, клапан, погодный контроллер и датчики температуры.

23-летний опыт выполнения работ, система качества ИСО 9001, лицензии и сертификаты на производство и ремонт средств измерений, допуски СРО (проектирование, монтаж, энергоаудит), аттестат аккредитации в области обеспечения единства измерений и рекомендации клиентов, включая государственные органы, муниципальные администрации, крупные промышленные предприятия, позволяют предприятию «ЭЛЕКОМ» реализовывать высокотехнологичные решения для энергосбережения и повышения энергетической эффективности с оптимальным соотношением цена/качество.

Системы погодного регулирования тепловой энергии (далее – «системы») предназначены для автоматического регулирования температуры теплоносителя, горячей воды или температуры воздуха внутри помещений в системах управления отоплением, горячим водоснабжением (ГВС) или приточной вентиляцией.

Системы регулирования отопления классифицируются в зависимости от назначения по следующим теплотехническим схемам:

1. Зависимая система отопления с запорно-регулирующим клапаном и циркуляционным насосом (ΔP

Поз. Наименование Кол. Описание
1 Регулятор температуры РТ-2010 1 Описание
2 Клапан запорно-регулирующий 1 Описание
3 2 Описание
4 1 Описание
5 2 Описание
6 Фильтр магнитный фланцевый 2 Описание
7 Кран шаровый 11с67п 6 Описание
8 Термометр 4
9 Манометр 6
10 Насос циркуляционный сдвоенный IMP PUMPS 1 Описание
11 Клапан обратный межфланцевый 1 Описание
12 1 Описание
18 Манометр ЭКМ 1

ОПИСАНИЕ СХЕМЫ: Схема используется при подаче перегретого теплоносителя от теплоисточника при недостаточном для элеваторного смешения перепаде давления между подающим и обратным трубопроводами: менее 0,06 МПа.

В схеме предусмотрено:



ПРИНЦИП ДЕЙСТВИЯ:

2. Зависимая система отопления с регулирующим гидроэлеватором (0,06МПа ≤ ΔP ≤ 0,4МПа)

ОПИСАНИЕ СХЕМЫ: Схема используется при подаче перегретого теплоносителя от теплоисточника при достаточном для функционирования гидроэлеватора перепаде давления между подающим и обратным трубопроводами: не менее 0,06 МПа и не более 0,4 МПа.

В схеме предусмотрено:

Возможность введения гибкого графика регулирования температуры воздуха впомещениях с учётом ночного времени, выходных и праздничных дней на весь отопительный сезон;
- обязательный контроль температуры обратного теплоносителя;
- поддержание температурного графика.

ПРИНЦИП ДЕЙСТВИЯ: Регулирование температуры системы отопления в зависимости от температуры наружного воздуха происходит при перемещении конусной иглы и изменения площади проходного сечения отверстия воронки гидроэлеватора. В процессе работы контроллер периодически опрашивает датчики температуры теплоносителя, наружного воздуха и воздуха внутри помещения (если он есть). При увеличении (уменьшении) температуры аружного воздуха контроллер формирует выходной управляющий сигнал, дающий команду исполнительному механизму на закрытие (открытие). Шаговый двигатель риходит в движение и, конусная игла, перемещаясь, уменьшает (увеличивает) площадь роходного сечения. Результатом этого является то, что в суммарный поток поступает больше теплоносителя из обратного трубопровода для уменьшения температуры еплоносителя или подающего трубопровода для увеличения температуры. При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования вляется поддержание температурного графика.

ПРЕИМУЩЕСТВА:

Регулирующий элеватор не требует применения дополнительного насоса, так какодним из элементов его конструкции является струйный насос.
Применение регулирующих гидроэлеваторов снижает монтажные и эксплуатационные расходы и не приводит к нештатным ситуациям при сбоях в электропитании.
В аварийных случаях остановка насоса в системе отопления требует неотложных мер, чтобы не допустить замораживания системы. Схема с регулирующим гидроэлеватором лишена этого недостатка.
По состоянию на 01.01.11 г. в Беларуси и России работает более 52 тыс. систем регулирования с гидроэлеваторами.

3. Зависимая система отопления с смесительным трехходовым клапаном и циркуляционным насосом.

Поз. Наименование Кол. Описание
1 Регулятор температуры 1 Описание
2 1 Описание
3 Датчик температуры теплоносителя 2 Описание
4 Датчик температуры наружного воздуха 1 Описание
5 Датчик температуры воздуха внутри помещения 2 Описание
6 Фильтр сетчатый магнитный 2 Описание
7 Кран шаровый 5 Описание
8 Термометр 4
9 Манометр 6
10 1 Описание
11 Клапан обратный 1 Описание
12 1 Описание
18 Манометр ЭКМ 1

ОПИСАНИЕ СХЕМЫ: Схема используется при подаче перегретого теплоносителя от теплоисточника при недостаточном для элеваторного смешения перепаде давления между подающим и обратным трубопроводами: менее 0,06 МПа и более 0,4 МПа.

В схеме предусмотрено:

Автоматическое переключение между основным и резервным насосом при отказеодного из насосов;
- возможность введения гибкого графика регулирования температуры воздуха в помещениях с учётом ночного времени, выходных и праздничных дней на весь отопительный сезон;
- обязательный контроль температуры обратного теплоносителя;
- поддержание температурного графика.

ПРИНЦИП ДЕЙСТВИЯ: Регулирование температуры системы отопления происходит путем изменения пропускной способности клапана и подмешивания сетевой воды при помощи циркуляционного насоса.
В процессе работы контроллер периодически опрашивает датчики температуры теплоносителя, датчик воздуха внутри помещения (если он есть) и датчик наружного воздуха, обрабатывает полученную информацию и формирует выходные управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие. Управляющее воздействие от контроллера изменяет величину открытия проходного сечения регулирующего клапана. При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования является поддержание температурного графика.

4. Зависимая система отопления с запорно-регулирующим клапаном и циркуляционным насосом (ΔP > 0,4МПа).

Поз. Наименование Кол. Описание
1 Регулятор температуры 1 Описание
2 Клапан запорно-регулирующий 1 Описание
3 Датчик температуры теплоносителя 2 Описание
4 Датчик температуры наружного воздуха 1 Описание
5 Датчик температуры воздуха внутри помещения 2 Описание
6 Фильтр сетчатый магнитный 2 Описание
7 Кран шаровый 6 Описание
8 Термометр 4
9 Манометр 6
10 Насос циркуляционный сдвоенный 1 Описание
11 Клапан обратный 1 Описание
12 1 Описание
18 Манометр ЭКМ 1

ОПИСАНИЕ СХЕМЫ: Схема используется при подаче перегретого теплоносителя от теплоисточника при недостаточном для элеваторного смешения перепаде давления между подающим и обратным трубопроводами: более 0,4 МПа.

В схеме предусмотрено:

Автоматическое переключение между основным и резервным насосом;
- возможность введения гибкого графика регулирования температуры воздуха в помещениях с учётом ночного времени, выходных и праздничных дней на весь отопительный сезон;
- обязательный контроль температуры обратного теплоносителя;
- поддержание температурного графика.

ПРИНЦИП ДЕЙСТВИЯ: Регулирование температуры системы отопления происходит путем изменения пропускной способности клапана и подмешивания сетевой воды при помощи циркуляционного насоса, установленного на прямом трубопроводе системы отопления. В процессе работы контроллер периодически опрашивает датчики температуры теплоносителя, датчик воздуха внутри помещения (если он есть) и датчик наружного воздуха, обрабатывает полученную информацию и формирует выходные управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие. Управляющее воздействие от контроллера изменяет величину открытия проходного сечения регулирующего клапана. При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования является поддержание температурного графика.

5. Независимая система отопления с запорно-регулирующим клапаном и циркуляционным насосом.

Поз. Наименование Кол. Описание
1 Регулятор температуры 1 Описание
2 Клапан запорно-регулирующий 1 Описание
3 Датчик температуры теплоносителя 2 Описание
4 Датчик температуры наружного воздуха 1 Описание
5 Датчик температуры воздуха внутри помещения 2 Описание
6 Фильтр сетчатый магнитный 2 Описание
7 Кран шаровый 4 Описание
8 Термометр 4
9 Манометр 6
10 Насос циркуляционный сдвоенный 1 Описание
11 Клапан обратный 1 Описание
12 1 Описание
18 Манометр ЭКМ 1

ОПИСАНИЕ СХЕМЫ: Схема используется при независимом подключении теплового пункта к теплосетям.

В схеме предусмотрено:

Эффективный пластинчатый теплообменник;
- автоматическое переключение между основным и резервным насосом при отказе одного из насосов;
- возможность введения гибкого графика регулирования температуры воздуха в помещениях с учётом ночного времени, выходных и праздничных дней на весь отопительный сезон;
- обязательный контроль температуры обратного теплоносителя;
- поддержание температурного графика.

ПРИНЦИП ДЕЙСТВИЯ: Регулирование температуры системы отопления происходит путем изменения пропускной способности клапана. Следовательно, происходит изменение количества теплоносителя из сети теплоснабжения, проходящего через теплообменник. В процессе работы контроллер периодически опрашивает датчики температуры теплоносителя, датчик наружного воздуха и воздуха внутри помещения (если он есть), обрабатывает полученную информацию и формирует выходные управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие. Управляющее воздействие от контроллера изменяет величину открытия проходного сечения регулирующего клапана. При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования является поддержание температурного графика.

ПРЕИМУЩЕСТВА: Эффективная регулировка параметров теплопотребления в широких пределах, т.к.потребитель отвечает перед теплоснабжающей организацией только за параметры обратного теплоносителя.
Равномерная циркуляция теплоносителя по всем отопительным приборам.

6. Открытая система горячего водоснабжения с смесительным трехходовым клапаном и циркуляционным насосом.

Поз. Наименование Кол. Описание
1 Регулятор температуры 1 Описание
2 Клапан смесительный трехходовой 1 Описание
3 Датчик температуры теплоносителя 2 Описание
6 Фильтр сетчатый магнитный 2 Описание
7 Кран шаровый 10 Описание
8 Термометр 7
9 Манометр 9
10 Насос циркуляционный 1 Описание
11 Клапан обратный 2 Описание
12 1 Описание
17 Дроссельная диафрагма 1
18 Манометр ЭКМ 1

ОПИСАНИЕ СХЕМЫ: Схема применяется для оптимизации систем горячего водоснабжения с открытым водоразбором.

В схеме предусмотрено:


- возможность введения гибкого графика регулирования температуры горячей воды с учётом ночного времени, «нерабочего» время;
- На «нерабочее» время насос автоматически отключается.

ПРИНЦИП ДЕЙСТВИЯ: Регулирование температуры теплоносителя ГВС происходит путем изменения пропускной способности клапана и подмешивания обратной сетевой воды. В процессе работы контроллер периодически опрашивает датчики температуры теплоносителя, обрабатывает полученную информацию и формирует выходные управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие.

ПРЕИМУЩЕСТВА: Обеспечение гарантированного давления в трубопроводе горячей воды за счётвозможности подпитки из обратного трубопровода в отопительный период. Наличие дроссельной шайбы перед обратным трубопроводом обеспечивает минимальную циркуляцию в контуре ГВС при отсутствии водоразбора и не допускает перегрева обратного теплоносителя.

МЕТОДИКА ПОДБОРА ДРОССЕЛЬНОЙ ШАЙБЫ: Согласно своду правил по проектированию и строительству СП 41-101-95 «Проектирование тепловых пунктов» диаметр отверстий дроссельных диафрагм следует определять по формуле:

где d – диаметр отверстия дроссельной диафрагмы, мм; G – расчетный расход воды в трубопроводе, т/ч; ΔH - напор, гасимый дроссельной диафрагмой, м.
Минимальный диаметр отверстия дроссельной диафрагмы должен приниматься равным 3 мм.

7. Закрытая система горячего водоснабжения с запорно-регулирующим клапаном и циркуляционным насосом.

- эффективный пластинчатый теплообменник;
- циркуляционный трубопровод горячего водоснабжения для стабильного поддержания температуры горячей воды во всём контуре;
- возможность введения гибкого графика регулирования температуры горячей воды с учётом ночного времени, выходных и праздничных дней («нерабочее» время);
- возможен контроль температуры обратного теплоносителя при установке дополнительного датчика температуры обратной воды;
- за счёт применения запорно-регулирующего клапана в периоды отсутствия разбора горячей воды теплоноситель от теплоисточника не расходуется;
автоматическое отключение насоса на «нерабочее» время.

ПРИНЦИП ДЕЙСТВИЯ: Регулирование температуры системы ГВС происходит путем изменения пропускной способности запорно-регулирующего клапана. В процессе работы контроллер опрашивает датчик температуры теплоносителя ГВС, обрабатывает полученную информацию и формирует выходные управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие. Управляющее воздействие от контроллера изменяет величину открытия проходного сечения регулирующего клапана.

В типовых схемах погодного регулирования отопления 1, 3-7 насосы используются для преодоления сопротивления установленного оборудования, для поддержания циркуляции в системах отопления и горячего водоснабжения и могут отключатся регуляторами по времени для ночного снижения расхода теплоносителя. Для защиты насосов от «сухого» хода и от гидравлического удара в схемах 1, 3-7 используется электроконтактный манометр.

Системы выполняют следующие функции регулирования отопления:
- регулирование в системах отопления по отопительному графику зависимости температуры теплоносителя от температуры наружного воздуха;
- программное снижение расхода теплоносителя на отопление в ночное время, выходные и праздничные дни (нерабочее время);
- ограничение температуры обратной сетевой воды по графику ее зависимости от температуры наружного воздуха в соответствии с требованиями теплоснабжающей организации в системах отопления;
- поддержание температуры горячей воды в системах ГВС с возможностью снижения температуры на нерабочее время;
- защита от замораживания системы отопления;

На базе регуляторов температуры (см. раздел III) и клапанов регулирующих и запорно-регулирующих производства ОАО «Завод Этон», а так же других производителей, возможно комплектовать системы регулирования и учета с количеством контуров регулирования до 2-х. Они представляют сочетание схем 1 7 с одним или несколькими одно-(двух-)контурными регуляторами температуры. Количество клапанов и (или) гидроэлеваторов регулирующих определяется числом контуров в регуляторе и схемой регулирования.
Для оформления заказа необходимо указать исполнение регулятора температуры, типоразмеры и количество клапанов в соответствии с настоящим каталогом и опросным листом.

Поз. Наименование Кол.


 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!