Одноходовой кожухотрубный теплообменник. Кожухотрубные теплообменники: конструкция, технические характеристики, производство


Технологические и производственные возможности ЗАО«Опытное машиностроительное производство» , а также накопленный опыт изготовления теплообменного оборудования, позволяют нам производить качественные теплообменные аппараты с широким спектром применения в различных отраслях промышленности.

Возможности производства по изготовлению теплообменных аппаратов:

  • изготовление теплообменников как по чертежам заказчика, так и по различным стандартам, ГОСТам и ТУ, в том числе производство кожухотрубных, кожухотрубчатых теплообменников
  • изготовление теплообменников, как из материала Исполнителя, так и из материала заказчика, с проведением входного контроля материалов
  • проведение предусмотренных технической документацией гидравлических испытаний до 10 МПа (100 кг/см2)
  • неразрушающий контроль сварных соединений (капиллярный, ультразвуковой (УЗК), рентгенографический) проводимый квалифицированными специалистами собственной аттестованной лаборатории
  • наличие грузоподъемного оборудования в сочетании с железнодорожными путями прямо в цехе, позволяющими производить и отгружать теплообменные аппараты и конденсационные установки весом свыше 100 тонн
  • нанесение (по желанию заказчика) защитных антикоррозионных покрытий для защиты от химически агрессивных сред и т.п.
  • выполнение эффективной теплоизоляции теплообменных аппаратов и конденсационных установок (по желанию заказчика)
  • наличие квалифицированного персонала



Наши преимущества:

  • Изделие отвечает техническим требованиям заказчика
  • Использование всего накопленного опыта компании
  • Гибкое взаимодействие с заказчиком
  • Отсутствие трудностей согласования
  • Гарантия качества изготовления
  • Непрерывное совершенствование технологии изготовления и производственных возможностей


Теплообменный аппарат (или теплообменник) - это устройство, в котором осуществляется передача тепла от одной рабочей среды к другой.

В качестве теплоносителей могут быть жидкости, газы, пары. В теплообменниках в зависимости от назначения протекают процессы нагревания или охлаждения, кипения, конденсации и многие другие технологические используемые в металлургической, нефтехимической, нефтеперерабатывающей, газовой, химической и других отраслях промышленности (в т. ч. в энергетике) и коммунальном хозяйстве.

По способу передачи тепла теплообменники подразделяются на смесительные и поверхностные .

Теплообменные аппараты со смешиванием теплоносителей, в таких смесительных теплообменниках теплоносители контактируют непосредственно и смешиваются, при этом теплообмен сопровождается массообменном.

В поверхностных теплообменниках передача тепла происходит через разделительную твердую стенку и между теплоносителями отсутствует непосредственный контакт.

Различают также рекуперативные и регенеративные теплообменные аппараты.

Рекуперативные теплообменники - это теплообменники, в которых холодный и горячий теплоносители движутся в разных каналах, а теплообмен происходит через стенку между ними.

В регенеративных теплообменных аппаратах теплоносители контактируют с твердой стенкой поочередно.

Теплота накапливается в стенке при контакте с горячим теплоносителем и отдается при контакте с холодным/

Смесительные теплообменники

Смесительные (контактные) теплообменники - это теплообменники со смешением сред, предназначенные для осуществления теплообменных и массообменных процессов путем прямого смешения.

В этом заключается их главное отличие от поверхностных теплообменников. Пароводяные струйные аппараты (ПСА) , использующие в своей основе струйный инжектор, являются наиболее распространенными смесительными теплообменниками струйного типа. Конструкция смесительных теплообменных аппаратов проще поверхностных, тепло используется более полно вследствие прямого контакта теплоносителей.

Однако следует заметить, что смесительные теплообменники со смешением сред пригодны, только если технологический процесс допускает такое смешение. В настоящее время тепловые схемы крупных энергоблоков мощностью от 300 до 1200 МВТ для ТЭЦ и АЭС содержат подогреватели конденсата смешивающего типа. Применение таких аппаратов повышает общий КПД турбоустановки. Однако, дополнительное число насосов для перекачки конденсата, требования к защите от заброса воды, сложности размещения подогревателей ограничивают широкое распространение смешивающих подогревателей. Широкое применение данный тип теплообменников находит также в установках утилизации тепла дымовых газов, отработанного пара и т.п.

В промышленности наиболее распространены поверхностные рекуперативные теплообменники:

  • кожухотрубные теплообменники
  • пластинчато-ребристые теплообменники
  • пластинчатые теплообменники
  • ребристые теплообменники
  • объемные и погружные теплообменники
  • витые теплообменники
  • змеевиковые
  • спиральные теплообменники
  • двухтрубные (типа «труба в трубе») теплообменники
Кожухотрубные теплообменники являются наиболее распространенными аппаратами. Они используются в различных технологических процессах, сопровождающихся теплообменом между жидкостями, парами и газами, в том числе при изменении агрегатного состояния. Теплообменные аппараты кожухотрубчатые состоят из трубных пучков, закрепленных в трубных досках с промежуточными перегородками, корпусов (кожухов), крышек, камер, патрубков и опор. Поверхность теплопередачи таких теплообменных кожухотрубчатых аппаратов может достигать нескольких десятков тысяч квадратных метров и состоять из десятков тысяч труб. В конструктивной схеме кожухотрубных теплообменников обеспечивается разобщение внутритрубного и межтрубного пространства, причем каждое из них может быть разделено на несколько ходов рабочей среды (теплоносителя).

По своей конструктивной схеме кожухотрубные подогреватели могут быть:

  • кожухотрубчатые теплообменники с жестким прикреплением концов труб в основных (концевых) трубных досках;
  • кожухотрубчатые теплообменники с промежуточными поперечными перегородками по длине труб (между основными трубными досками);
  • кожухотрубчатые теплообменники с линзовым компенсатором на корпусе;
  • кожухотрубчатые теплообменники с U-образными трубками;
  • кожухотрубчатые теплообменники с плавающей камерой;
  • кожухотрубчатые теплообменники с сильфонным компенсатором на подводящем патрубке;
  • кожухотрубчатые теплообменники с поперечным расположением пучков трубок относительно корпуса.
Достоинства кожухотрубных теплообменников:
  • простота конструкции, технологии изготовления монтажа и ремонта
  • бóльшая тепловая мощность аппаратов по сравнению с пластинчатыми
  • лучше приспособлены для очистки, что заметно облегчает обслуживание и повышает срок их службы (процесс очистки особенно эффективен с применением систем шариковой очистки (сшо))
  • ремонтопригодность и его экономическая целесообразность замены отдельных частей аппаратов
  • как следствие всего перечисленного, меньшая стоимость эксплуатации кожухотрубных теплообменников
В настоящее время стали появляться современные кожухотрубные теплообменники, оснащенные трубками, профилированными таким образом, что рост гидравлического сопротивления ненамного превышает рост теплоотдачи вследствие применения завихрителей потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, повышающие теплоотдачу в трубках. Эта технология, в дополнение к таким важным показателям как высокая надежность и меньшая стоимость, дает отечественному кожухотрубному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами .

Ребристые теплообменники применяются с целью увеличения теплопередачи через металлические стенки ребер в случаях, когда коэффициенты теплоотдачи по обеим сторонам стенки сильно различаются: например, при передаче тепла от конденсирующегося пара к стенке и от стенки к нагреваемому воздуху. Оребрение поверхности теплообмена вводится со стороны стенки с более низким коэффициентом теплоотдачи. В промышленности используются теплообменные аппараты с различными видами оребрения: шайбовое, пластинчатое, спиральное, проволочное, плавниковое, поперечное и продольное разрезное и т.д. Для оребрения теплообменных аппаратов выбирают тонкостенный, теплопроводный материал, прикрепляемый к стенке сваркой, пайкой, накаткой и т.п.

Пластинчатые теплообменники используются для осуществления теплообмена между газами и другими теплоносителями обычно с низкими значениями коэффициентов теплоотдачи. Конструктивно эти аппараты набирают из штампованных пластин, образующих между собой с одной стороны пластины каналы для одного теплоносителя, а с другой - для другого.

Пластины разделяются прокладками между ними, могут свариваться попарно и составлять необходимую поверхность теплообмена.

Достоинствами пластинчатых теплообменников является их компактность, значительная, удельная к объему поверхность нагрева. Хорошая тепловая эффективность для ряда сочетаний параметров теплоносителей.

К недостаткам пластинчатой конструкции можно отнести невозможность использования при высоких давлениях сред, небольшую тепловую мощность, ограниченный срок службы, трудности эксплуатации, очистки, герметичность и ремонт. Повышенные требования к качеству теплоносителей.

Пластинчато-ребристые теплообменники состоят из системы разделительных пластин, между которыми находятся ребристые поверхности - насадки, присоединенные к пластинам. Пластинчато-ребристые теплообменники,как правило, неразборные и различаются по типу ребер (гладкие, волнистые, прерывистые и др.), а также по направлению рабочих сред (прямоточные, противоточные, перекрестные).

В объемных теплообменниках (кожухотрубчатые теплообменники с U-образными трубками) одна из сред сосредоточена в незамкнутом объеме или в сосуде большого объема, а вторая протекает через трубный пучок прямых, U-образных или спиральных труб. Используются объемные теплообменники с погруженным трубчатым змеевиком или пучком прямых труб.

Витые теплообменники распространены в холодильной и химической промышленности. В таких аппаратах удается разместить большую поверхность теплообмена, чем в прямотрубных аппаратах. Витой теплообменник состоит из центральной трубы (сердечника) на которую навивают по спирали пучки труб. Шаг навивки и расстояние между трубами выбирается из условия равной длины труб. В разных рядах труб разное направление навивки (левое и правое). Дистанционные прокладки устанавливают зазор между трубами. Витые трубные пучки обеспечивают температурную компенсацию и плотность в местах их заделки. Как правило, витые трубные системы выполняются многозаходными.

Змеевиковые теплообменники являются кожухотрубными аппаратами, содержащими змеевиковые трубы, витки которых располагаются по винтовой линии. Змеевиков присоединяемых к коллектору подвода теплоносителя может быть несколько. В пароводяных теплообменниках греющая среда-пар обычно подводится сверху, а охлажденная среда-вода во внутритрубное пространство снизу. Также аппараты широко применяются в системах подогрева конденсата и питательной воды паротурбинных установок, к примеру кожухотрубный теплообменник конденсатор, однако в настоящее время все больше вытесняются «камерными» теплообменниками, содержащими камеры для подвода теплоносителя. Одновременно появляются проектно-конструкторские разработки современных коллекторно-спиральных пароводяных теплообменников для использования в системе подогрева питательной воды турбоустановок ТЭС и АЭС. По мнению разработчиков, применение таких аппаратов может дать весьма значительное снижение металлоемкости всего теплообменного оборудования паротурбинных установок.

Спиральные теплообменники являются одними из простых по конструкции аппаратов и состоят из двух стальных лент, навитых по спирали вокруг центральной разделительной перегородки и образующих два параллельных спиральных канала для рабочих сред. Спиральные каналы прямоугольного сечения ограничены с торцов крышками, в которых имеются патрубки для подвода или отвода среды. Также аппараты обычно применяют при небольших расходах, а также разностях давлений и температур рабочих сред. В последние годы также аппараты вытесняются пластинчатыми теплообменниками.

Двухтрубные теплообменники типа «труба в трубе» давно применяются в промышленности. Также аппараты удобны для нагрева и охлаждения рабочих сред, находящихся под высоким давлением. В этих теплообменниках достигаются хорошие коэффициенты теплопередачи. В изготовлении, при монтаже и эксплуатации они довольно просты, причем при отсутствии необходимости чистки они изготавливаются сварными. Однако, несмотря на простоту конструкции, такие теплообменники довольно громоздки, их удельная металлоемкость по сравнению с другими аппаратами высока. По этой причине область применения таких теплообменников непрерывно сокращается.

Наш производственный опыт показывает, что важным фактором, влияющим на качество изготовления такого сложного оборудования, как теплообменные аппараты, работающие под давлением, является не только наличие технической документации, но и технически грамотно разработанная технология изготовления . Хотим обратить внимание на то, что в отличие от технической документации и производственного оборудования, технология изготовления - это не тиражируемая категория; она привязана к конкретному производству, что дает последнему серьезные преимущества перед конкурентами, не имеющими собственной, проверенной временем технологии. Очевидно, что уже освоенная и хорошо себя зарекомендовавшая производственная технология позволяет в кратчайшие сроки начинать изготовление серийных и малосерийных изделий, а так же быстро осваивать производство опытных единичных образцов продукции.

Главные конденсаторы турбин

Служат для создания вакуума в выхлопном патрубке турбины, сохранения, первичной деаэрации и возврата в цикл конденсата пара, поступающего из турбины. Одновременно конденсатор является частью системы котельной установки станции. Вакуум в конденсаторе создается при помощи конденсации отработавшего в турбине пара, в результате резкого уменьшения удельного объема при превращении пара в конденсат и отсоса неконденсирующихся газов из конденсатора.
В современных мощных паротурбинных установках применяются почти исключительно конденсаторы поверхностного типа , в которых охлаждающая вода прокачивается внутри труб трубных пучков, расположенных в паровом пространстве конденсаторов. Пар, поступающий из турбины, соприкасается с холодной поверхностью труб и конденсируется на них, отдавая теплоту парообразования протекающей внутри труб охлаждающей воде. Конденсат стекает в нижнюю часть конденсатора и откачивается из конденсатосборника конденсатными насосами. Воздух и неконденсирующиеся газы, проникающие через неплотности установки, удаляются из конденсатора эжекторами . Конденсат пара используется для питания котлов и представляет большую ценность, т.к. подвергается высокой степени очистки. Конденсатор не должен допускать переохлаждения конденсата и должен иметь минимальное сопротивление по охлаждающей воде. Теоретически возможный вакуум в конденсаторе зависит только от температуры и располагаемого количества охлаждающей воды. Практический вакуум в эксплуатации зависит от совершенства конструкции конденсатора, вакуумной плотности части турбоустановки, находящейся под вакуумом и чистоты трубок конденсатора.




Конструкция конденсаторов , для турбин различной мощности от 25 до 1200 МВт, определяется расположением в установке и конструкцией фундамента, например, если поверхность теплопередачи конденсатора достигает 8800 м2 и содержит до 84000 трубок, то масса такого конденсатора достигает 2000 т.
Все конденсаторы представляют собой сложную пространственную конструкцию, находящуюся под глубоким вакуумом. Корпуса конденсаторов выполняются из листовой углеродистой стали и имеют внутреннее оребрение, а также усилены продольными и поперечными связями из круглой стали. Охлаждающие трубки концами закрепляются в основных трубных досках и имеют опоры в промежуточных трубных перегородках. Расстановка перегородок в корпусе выполняется по расчету на вибрацию, чтобы исключить опасные формы колебаний трубок. Водяные камеры, как правило, привариваются и имеют открывающие крышки для замены трубок. Для доступа внутрь водяных камер для мелких работ крышки имеют люки. В верхней части конденсатор могут быть встроены один или два регенеративных подогревателя низкого давления . Конденсаторы имеют, как правило, целый ряд приспособлений для приема пара и воды из различного оборудования турбоустановки, необходимых для осуществления цикла.

ЗАО «Опытное машиностроительное производство» предлагает своим клиентам не просто изготовление технологического оборудования, не только услуги собственной производственной базы, но и многолетний опыт, проверенные производственные технологии и готовность квалифицированного персонала решать именно Ваши задачи.

Кожухотрубные теплообменники относятся к поверхностным теплообменным аппаратам рекуперативного типа. Широкое распространение этих аппаратов обусловлено прежде всего надежностью конструкции и большим набором вариантов исполнения для различных условий эксплуатации:

    Однофазные потоки, кипение и конденсация;

    Вертикальное и горизонтальное исполнение;

    Широкий диапазон давлений теплоносителей, от вакуума до 8,0 МПа;

    Площади поверхности теплообмена от малых (1 м 2) до предельно больших (1000 м 2 и более);

    Возможность применения различных материалов в соответствии с требованиями к стоимости аппаратов, агрессивностью, температурными режимами и давлением теплоносителей;

    Использование различных профилей поверхности теплообмена как внутри труб, так и снаружи и различных турбулизаторов;

    Возможность извлечения пучка труб для очистки и ремонта.

Различают следующие типы кожухотрубных теплообменных аппаратов:

    Теплообменные аппараты с неподвижными трубными решетками (жесткотрубные ТА);

    Теплообменные аппараты с неподвижными трубными решетками и с линзовым компенсатором на кожухе;

    Теплообменные аппараты с плавающей головкой;

    Теплообменные аппараты с U– образными трубами.

Кожухотрубные теплообменные аппараты с неподвижными трубными решетками отличаются простотой конструкции и, следовательно, меньшей стоимостью (рис. 1).

Рис. 1.Кожухотрубчатый теплообменник с неподвижными трубными решетками:

1 -распределительная камера; 2 -кожух; 3 -теплообменная труба; 4 -поперечная перегородка; 5 -трубная решетка; 6 - задняя крышка кожуха; 7 -опора; 8- дистанционная трубка; 9-штуцеры; 10-перегородка в распределительной камере; 11 - отбойник

Кожухотрубный теплообменный аппарат представляет из себя пучок теплообменных труб, находящихся в цилиндрическом корпусе (кожухе). Один из теплоносителей движется внутри теплообменных труб, а другой омывает наружную поверхность труб. Концы труб закрепляются с помощью вальцовки, сварки или пайки в трубных решетках. В кожух теплообменного аппарата с помощью дистанционных трубок устанавливаются перегородки. Перегородки поддерживают трубы от провисания и организуют поток теплоносителя в межтрубном пространстве, интенсифицируя теплообмен. К кожуху теплообменного аппарата привариваются штуцеры для входа и выхода теплоносителя из межтрубного пространства. На входе теплоносителя в межтрубное пространство в ряде случаев устанавливают отбойники, необходимые для уменьшения вибрации пучка труб, равномерного распределения потока теплоносителя в межтрубном пространстве и снижения эррозии ближайших к входному штуцеру труб. К кожуху теплообменного аппарата с помощью фланцевого соединения крепятся распределительная камера и задняя крышка со штуцерами для входа и выхода продукта из трубного пространства.

В зависимости от расположения теплообменных труб различают теплообменные аппараты горизонтального и вертикального типа.

В зависимости от числа перегородок в распределительной камере и задней крышке кожухотрубчатые теплообменные аппараты делятся на одноходовые, двухходовые и многоходовые в трубном пространстве.

В зависимости от числа продольных перегородок, установленных в межтрубном пространстве, кожухотрубные теплообменники делятся на одно – и многоходовые в межтрубном пространстве.

Теплообменники cнеподвижными трубными решетками применяются, если максимальная разность температур теплоносителей не превышает 80 0 С,и при сравнительно небольшой длине аппарата. Эти ограничения объясняются возникающими в кожухе и в теплообменных трубах температурными напряжениями, способными нарушить герметичность конструкции аппарата.

Для частичной компенсации температурных напряжений в кожухе и в теплообменных трубах используются специальные гибкие элементы (расширители, компенсаторы), установленные на кожухе аппарата. Такие теплообменники называются теплообменными аппаратами с температурным компенсатором на кожухе (рис. 2).

Рис. 2.Вертикальный кожухотрубчатый теплообменник с неподвижными трубными решетками и температурным компенсатором на кожухе:

1-распределительная камера; 2 - трубные решетки; 3 - компенсатор; 4 - кожух; 5 - опора; 6 - теплообменная труба; 7 -поперечная перегородка; 8 - задняя крышка кожуха; 9 - дистанционная трубка; 10 - штуцеры

В аппаратах подобного типа используют одно- и многоэлементные линзовые компенсаторы.

Кожухотрубчатые теплообменные аппараты с плавающей головкой (с подвижной трубной решеткой) являются наиболее распространенным типом кожухотрубных теплообменников (рис. 3). Подвижная трубная решетка позволяет трубному пучку свободно перемещаться независимо от корпуса, что значительно снижает температурные напряжения как в кожухе, так и в теплообменных трубах.

Рис. 3.Кожухотрубчатый теплообменник с плавающей головкой:

1 -крышка распределительной камеры; 2 -распределительная камера; 3 -неподвижная трубная решетка; 4 -кожух; 5 -теплообменная труба; 6 - поперечная перегородка; 7 - подвижная трубная решетка; 8 -задняя крышка кожуха; 9 -крышка плавающей головки; 10 - опора; 11 -катковая опора трубного пучка

Теплообменные аппараты данного типа выполняюся с двумя или с четырьмя ходами по трубному пространству.

Аппараты с плавающей головкой чаще всего выполняются одноходовыми по межтрубному пространству. В аппаратах с двумя ходами по межтрубному пространству устанавливается продольная перегородка.

Кожухотрубчатые теплообменники с U-образнымитрубами (рис. 4)имеют одну трубную решетку, в которую завальцованы оба концаU-образныхтеплообменных труб. Отсутствие других жестких связей теплообменныхU-образныхтруб с кожухом обеспечивает свободное удлинение труб при изменении их температуры. Кроме того, преимущество теплообменников с U-образнымитрубами заключается вотсутствии разъемного соединения внутри кожуха (в отличии от ТА с плавающей головкой), что позволяет успешно применять их при повышенных давлениях теплоносителей, движущихся в трубном пространстве. Недостатком таких аппаратов является трудность чистки внутренней и наружной поверхности труб, вследствие чего они используются преимущественно для чистых продуктов.

Рис. 4. Кожухотрубчатый теплообменник с U-образнымитеплообменными трубами:

1 -распределительная камера; 2 -трубная решетка; 3 -кожух; 4 -теплообменная труба; 5 -поперечная перегородка; 6 -крышка кожуха; 7 -опора; 8 -катковая опора трубного пучка

Эффективность кожухотрубчатых теплообменных аппаратов повышается с увеличением скорости движения потоков теплоносителей и степени их турбулизации. Для увеличения скорости движения потоков в межтрубном пространстве и их турбулизации, повышения качества омывания поверхности теплообмена в межтрубное пространство кожухотрубчатых теплообменных аппаратов устанавливаются специальные поперечные перегородки. Они также выполняют роль опор трубчатого пучка, фиксируя трубы в заданном положении, и уменьшают вибрацию труб.

На рис. 5 показаны поперечные перегородки различных типов. Наибольшее распространение получили сегментные перегородки (рис. 5а).

Рис. 5. Поперечные перегородки кожухотрубных аппаратов:

а - с сегментным вырезом; б - с секторным вырезом; в - перегородки «диск-кольцо»; г - с щелевым вырезом; д - «сплошные»

Поперечные перегородки с секторным вырезом (рис. 5б) оснащены дополнительной продольной перегородкой, равной по высоте половине внутреннего диаметра кожуха аппарата. Секторный вырез, по площади равный четверти сечения аппарата, располагают в соседних перегородках в шахматном порядке. При этом теплоноситель в межтрубном пространстве совершает вращательное движение то по часовой стрелке, то против нее.

Аппараты со «сплошными» перегородками (рис. 5д) используются обычно для чистых жидкостей. В этом случае жидкость протекает по кольцевому зазору между теплообменными трубами и отверстиями в перегородках.

Для повышения тепловой мощности теплообменных аппаратов при неизменных длинах труб и габаритах теплообменника используется оребрение наружной поверхности теплообменных труб. Оребренные теплообменные трубы применяются в тех случаях, когда со стороны одного из теплоносителей трудно обеспечить высокий коэффициент теплоотдачи (газообразный теплоноситель, вязкая жидкость, ламинарное течение и т.д.). На рис. 6приведены варианты наружного оребрения теплообменных труб.

Рис. 6.Оребренные трубы:

а -с приварными «корытообразными» ребрами; б-с завальцованными ребрами; в -с винтовыми накатанными ребрами; г-с выдавленными ребрами; д -с приварными шиловидными ребрами

Для интенсификации теплоотдачи в трубном пространстве используются методы воздействия на поток устройствами, которые турбулизируют теплоноситель в теплообменных трубах. Для этой цели применяются различного рода турбулизирующие вставки, варианты исполнения которых представлены на рис. 7.

Рис. 7. Теплообменные трубы с турбулизаторами:

а -шнековые завихрители; б -ленточные завихрители; в -диафрагмовые трубы с вертикальными канавками; г -диафрагмовые трубы с наклонными канавками; д -проволочные турбулизаторы; е -турбулизирующие вставки

В кожухотрубных теплообменных аппаратах теплоноситель, поступая в межтрубное пространство, в силу конструктивных особенностей делится на несколько потоков (рис. 8):

    А – основной поперечный поток;

    B– перетоки в щелях между отверстиями в поперечных перегородках и теплообменными трубами;

    C– перетоки между кромками перегородок и кожухом;

    D– байпасный поток через зазор между пучком труб и кожухом.

Разделение потока теплоносителя, поступающего в межтрубное пространство, на несколько потоков значительно усложняет гидродинамическую картину движения теплоносителя по сравнению с поперечным омыванием пучков труб и оказывает существенное влияние как на конвективный теплообмен, так и на падение давления теплоносителя. Распределение потоков в межтрубном пространстве зависит от конструктивных характеристик теплообменного аппарата, оптимизация которых является главной задачей при создании новых теплообменников.


Рис. 8. Схема потоков теплоносителя в межтрубном пространстве кожухотрубного теплообменника:

A- основной поперечный поток; В - перетоки в щелях между отверстиями в перегородках и трубами;C- перетоки между кромкой перегородки и кожухом;D- байпасный поток через зазор между пучком труб и кожухом

Учет распределения потоков теплоносителя в межтрубном пространстве необходим, так как в противном случае возможны значительные ошибки при определении среднего коэффициента теплоотдачи и падения давления теплоносителяp , которые могут составить от 50 до 150 %.

В зависимости от совершенства конструкции теплообменного аппарата меняется и распределение потоков в межтрубном пространстве. При турбулентном режиме течения основной поток (A) не превышает 40 % от всего потока теплоносителя, а при ламинарном – 25 %.

Кожухотрубные теплообменники относятся к наиболее распространенным аппаратам. Их применяют для теплообмена и термохимических процессов между различными жидкостями, парами и газами – как без изменения, так и с изменением их агрегатного состояния.

Кожухотрубные теплообменники появились в начале ХХ века в связи с потребностями тепловых станций в теплообменниках с большой поверхностью, таких, как конденсаторы и подогреватели воды, работающие при относительно высоком давлении. Кожухотрубные теплообменники применяются в качестве конденсаторов, подогревателей и испарителей. В настоящее время их конструкция в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной. В те же годы началось широкое промышленное применение в нефтяной промышленности. Для эксплуатации в тяжелых условиях потребовались нагреватели и охладители массы, испарители и конденсаторы для различных фракций сырой нефти и сопутствующих органических жидкостей. Теплообменникам часто приходилось работать с загрязненными жидкостями при высоких температурах и давлениях, и поэтому их необходимо было конструировать так, чтобы обеспечить легкость ремонта и очистки.

С годами кожухотрубные теплообменники стали наиболее широко применяемым типом аппаратов. Это обусловлено прежде всего надежностью конструкции, большим набором вариантов исполнения для различных условий эксплуатации, в частности:

  • однофазные потоки, кипение и конденсация по горячей и холодной сторонам теплообменника с вертикальным или горизонтальным исполнением
  • диапазон давления от вакуума до высоких значений
  • в широких пределах изменяющиеся перепады давления по обеим сторонам вследствие большого разнообразия вариантов
  • удовлетворение требований по термическим напряжениям без существенного повышения стоимости аппарата
  • размеры от малых до предельно больших (5000 м 2)
  • возможность применения различных материалов в соответствии с требованиями к стоимости, коррозии, температурному режиму и давлению
  • использование развитых поверхностей теплообмена как внутри труб, так и снаружи, различных интенсификаторов и т.д.
  • возможность извлечения пучка труб для очистки и ремонта

Однако такое широкое разнообразие условий применения кожухотрубных теплообменников и их конструкций никоим образом не должно исключать поиск других, альтернативных решений, таких, как применение пластинчатых, спиральных или компактных теплообменников в тех случаях, когда их характеристики оказываются приемлемыми и их применение может привести к экономически более выгодным решениям.

Кожухотрубные теплообменники состоят из пучков труб, укрепленных в трубных досках, кожухов, крышек, камер, патрубков и опор. Трубное и межтрубное пространства в этих аппаратах разобщены, причем каждое из них может быть разделено перегородками на несколько ходов. Классическая схема показана на рисунке:

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор паровой турбины мощностью 150 Мвт состоят из 17 тысяч труб с общей поверхностью теплообмена около 9000 м 2 .

Схемы кожухотрубчатых аппаратов наиболее распространенных типов представлены на рисунке:

Кожух (корпус) кожухотрубчатого теплообменника представляет собой трубу, сваренную из одного или нескольких стальных листов. Кожухи различаются главным образом способом соединения с трубной доской и крышками. Толщина стенки кожуха определяется давлением рабочей среды и диаметром кожуха, но принимается не менее 4 мм. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. На наружной поверхности кожуха прикрепляют опоры аппарата.

Трубчатка кожухотрубчатых теплообменников выполняется из прямых или изогнутых (U-образных или W-образных) труб диаметром от 12 до 57 мм. Предпочтительны стальные бесшовные трубы.

В проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения внутри труб. Поэтому при равных расходах теплоносителей с одинаковым фазовым состоянием коэффициенты теплоотдачи на поверхности межтрубного пространства невысоки, что снижает общий коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве кожухотрубчатого теплообменника способствует увеличению скорости теплоносителя и повышению эффективности теплообмена.

Трубные доски (решетки) служат для закрепления в них пучка труб при помощи развальцовки, разбортовки, заварки, запайки или сальниковых креплений. Трубные доски приваривают к кожуху (рис. а, в), зажимают болтами между фланцами кожуха и крышки (рис. б, г) или соединяют болтами только с фланцем свободной камеры (рис. д, е). материалом досок служит обычно листовая сталь толщиной не менее 20 мм.

Кожухотрубчатые теплообменники могут быть жесткой (рис. а, к), нежесткой (рис. г, д, е, з, и) и полужесткой (рис. б, в, ж) конструкции, одноходовые и многоходовые, прямоточные, противоточные и поперечноточные, горизонтальные, наклонные и вертикальные.

На рисунке а) изображен одноходовой теплообменник с прямыми трубками жесткой конструкции. Кожух и трубки связаны трубными решетками и поэтому нет возможности компенсации тепловых удлинений. Такие аппараты просты по устройству, но могут применяться только при сравнительно небольших разностях температур между корпусом и пучком труб (до 50 о С). Они имеют низкие коэффициенты теплопередачи вследствие незначительной скорости теплоносителя в межтрубном пространстве.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения трубок. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, коэффициенты теплоотдачи на поверхности межтрубного пространства невысокие, что снижает коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве способствует увеличению скорости теплоносителя и повышению коэффициента теплопередачи. На рисунке 1,б изображен теплообменник с поперечными перегородками в межтрубном пространстве и полужесткой мембранной компенсацией тепловых удлинений вследствие некоторой свободы перемещения верхней трубной доски.

В парожидкостных теплообменниках пар проходит обычно в межтрубном пространстве, а жидкость – по трубам. Разность температур стенки корпуса и труб обычно значительна. Для компенсации разности тепловых удлинений между кожухом и трубами устанавливают линзовые (рис. в), сальниковые (рис. з, и) или сильфонные (рис. ж) компенсаторы.

Для устранения напряжений в металле, обусловленных тепловыми удлинениями, изготавливают также однокамерные теплообменники с гнутыми U- и W-образными трубами. Они целесообразны при высоких давлениях теплоносителей, так как изготовление водяных камер и крепление труб в трубных досках в аппаратах высокого давления – операции сложные и дорогие. Однако аппараты с гнутыми трубами не могут получить широкого распространения из-за трудности изготовления труб с разными радиусами гиба, сложности замены труб и неудобства чистки гнутых труб.

Компенсационные устройства сложны в изготовлении (мембранные, сильфонные, с гнутыми трубами) или недостаточно надежны в эксплуатации (линзовые, сальниковые). Более совершенна конструкция теплообменника с жестким креплением одной трубной доски и свободным перемещением второй доски вместе с внутренней крышкой трубной системы (рис. е). некоторое удорожание аппарата из-за увеличения диаметра корпуса и изготовления дополнительного днища оправдывается простотой и надежностью в эксплуатации. Эти аппараты получили название теплообменников «с плавающей головкой». Теплообменники с поперечным током (рис. к) отличаются повышенным коэффициентом теплоотдачи на наружной поверхности вследствие того, что теплоноситель движется поперек пучка труб. При перекрестном токе снижается разность температур между теплоносителями, однако при достаточном числе трубных секций различие в сравнении с противотоком невелико. В некоторых конструкциях таких теплообменников при протекании газа в межтрубном пространстве и жидкости в трубах для повышения коэффициента теплоотдачи применяют трубы с поперечными ребрами.

Теплообменником называется устройство, в котором производится передача тепла между теплоносителями.

Принцип действия

Кожухотрубные теплообменники относятся к типу рекуперативных, где среды разделены стенками. Работа их заключается в процессах теплообмена между жидкостями. При этом может происходить изменение их агрегатного состояния. Теплообмен также может производиться между жидкостью и паром или газом.

Преимущества и недостатки

Кожухотрубные теплообменники распространены, благодаря следующим положительным качествам:

  • стойкость к механическим воздействиям и гидроударам;
  • невысокие требования к чистоте сред;
  • высокая надежность и долговечность;
  • широкий модельный ряд;
  • возможность применения с разными средами.

К недостаткам данного типа моделей относятся:

  • малая величина коэффициента теплопередачи;
  • значительные габариты и высокая металлоемкость;
  • высокая цена из-за повышенной металлоемкости;
  • необходимость применения устройств с большим запасом в связи с заглушкой поврежденных трубок при ремонтах;
  • колебания уровня конденсата нелинейно изменяет теплообмен в устройствах горизонтального исполнения.

Кожухотрубные теплообменники обладают низким коэффициентом теплопередачи. Отчасти это связано с тем, что пространство корпуса в 2 раза больше общего поперечного сечения трубок. Применение направляющих перегородок дает возможность повысить скорость жидкости и улучшить теплообмен.

В межтрубном пространстве проходит теплоноситель, а по трубкам подается нагреваемая среда. Аналогичным образом она может также охлаждаться. Эффективность теплообмена обеспечивается за счет увеличения числа трубок или созданием поперечного тока внешнего теплоносителя.

Компенсация температурных удлинений

Температура теплоносителей разная и в результате происходит тепловая деформация элементов конструкции. Кожухотрубный теплообменник выполняется с компенсацией удлинения или без нее. Жесткое крепление трубок допускается при разности температуры между ним и корпусом до 25-30 0 С. Если она превышает эти пределы, применяются следующие температурные компенсаторы.

  1. "Плавающая" головка - одна из решеток не имеет соединение с кожухом и свободно перемещается в осевом направлении при удлинении трубок. Конструкция является наиболее надежной.
  2. На корпусе выполнен линзовый компенсатор в виде гофра, который может расширяться или сжиматься.
  3. Сальниковый компенсатор установлен на верхнем днище, который имеет возможность перемещаться вместе с решеткой при температурном расширении.
  4. U-образные трубы свободно удлиняются в среде теплоносителя. Недостатком является сложность изготовления.

Типы кожухотрубных теплообменников

Конструктивное исполнение аппаратов отличается простотой, на них всегда есть спрос. Цилиндрическим корпусом служит стальной кожух большого диаметра. На его кромках выполнены фланцы, на которых установлены крышки. В трубных досках внутри корпуса закреплены сваркой или развальцовкой трубные пучки.

Материалом для трубок служит сталь, медь, латунь, титан. Стальные доски крепят между фланцами или приваривают к кожуху. Между ними и корпусом внутри образуются камеры, через которые проходят теплоносители. Также там имеются перегородки, изменяющие движение жидкостей, проходящие через кожухотрубные теплообменники. Конструкция позволяет изменить скорость и направление потока, проходящего между трубками, тем самым увеличив интенсивность теплообмена.

Устройства могут располагаться в пространстве вертикально, горизонтально или с наклоном.

Разные типы кожухотрубных теплообменников отличаются расположением перегородок и устройством компенсаторов температурных удлинений. При малом числе трубок в пучке кожух имеет небольшой диаметр, и поверхности теплообмена получаются небольшими. Для их увеличения теплообменники последовательно соединяются в секции. Самой простой является конструкция "труба в трубе", которую часто изготавливают самостоятельно. Для этого необходимо правильно подобрать диаметры внутренней и наружной трубы и скорость потоков теплоносителей. Удобство чистки и ремонта обеспечивается за счет колен, которыми соединяются соседние секции. Эту конструкцию часто используют как пароводяные кожухотрубные теплообменники.

Спиральные теплообменные аппараты представляют собой каналы, выполненные прямоугольной формы и сваренные из листов, по которым перемещаются теплоносители. Достоинством является большая поверхность контакта с жидкостями, а недостатком - низкое допускаемое давление.

Новые конструкции теплообменников

В наше время начинает развиваться производство компактных теплообменников с рельефными поверхностями и интенсивным движением жидкостей. В результате их технические характеристики приближаются к пластинчатым аппаратам. Но производство последних также развивается, и догнать их сложно. Замена кожухотрубных теплообменников на пластинчатые целесообразна, благодаря следующим преимуществам:

К недостатку относится быстрая загрязненность пластин из-за малой величины зазоров между ними. Если хорошо фильтровать теплоносители, теплообменный аппарат будет работать долго. Мелкие частицы не удерживаются на полированных пластинах, а турбулизация жидкостей также предупреждает осаждение загрязнений.

Повышение интенсивности теплообмена аппаратов

Специалисты постоянно создают новые кожухотрубные теплообменники. Технические характеристики улучшаются за счет применения следующих способов:


Турбулизация потоков жидкостей значительно уменьшает солеотложение на стенках труб. За счет этого не требуются мероприятия по их очистке, которые необходимы для гладких поверхностей.

Производство кожухотрубных теплообменников с внедрением новых методов позволяет повысить в 2-3 раза эффективность теплоотдачи.

Учитывая дополнительные энергозатраты и стоимость, производственники чаще стараются заменить теплообменник на пластинчатый. По сравнению с обычными кожухотрубными они лучше по теплопередаче на 20-30 %. Это больше связано с освоением производства новой техники, которое пока идет со сложностями.

Эксплуатация теплообменников

Аппараты нуждаются в периодическом осмотре и контроле за работой. Параметры, например, температура, измеряются по их значениям на входе и выходе. Если эффективность работы снизилась, нужно проверить состояние поверхностей. Особенно влияют солевые отложения на термодинамические параметры теплообменников, где малая величина зазоров. Очистка поверхностей производится химическим способом, а также за счет применения ультразвуковых колебаний и турбулизации потоков теплоносителей.

Ремонт кожухотрубных аппаратов в основном заключается в запаивании прохудившихся трубок, что ухудшает их технические характеристики.

Заключение

Оптимальные кожухотрубные теплообменники конкурируют с пластинчатыми и могут применяться во многих областях техники. Новые конструкции имеют значительно меньшие габариты и металлоемкость, что позволяет снизить рабочие площади и уменьшить затраты на создание и эксплуатацию.

Кожухотрубный теплообменник: технические характеристики и принцип работы

5 (100%) голосов: 3

Сейчас мы с вами рассмотрим технические характеристики и принцип работы кожухотрубных теплообенников, а так же расчёт их параметров и особенности выбора при покупке.

Теплообменники обеспечивают процесс обмена теплом между жидкостями, каждая из которых имеет разную температуру. В настоящее время кожухотрубный теплообменник с большим успехом нашел свое применение в различных отраслях промышленности: химической, нефтяной, газовой. При их изготовлении не возникает сложностей, они надежны и имеют возможность развивать большую поверхность теплообмена в одном аппарате.

Получили такое название благодаря наличию кожуха, скрывающего внутренние трубы.

Устройство и принцип действия

Строение: конструкция из пучков труб, закрепленных в трубных досках (решетках) крышек, кожухов и опор.

Принцип, по которому осуществляет свою деятельность кожухотрубчатый теплообменник довольно прост. Он заключается в движении холодного и горячего теплоносителей по разным каналам. Теплообмен происходит именно между стенками этих каналов.

Принцип работы кожухотрубчатого теплообменника

Преимущества и недостатки

Сегодня кожухотрубные теплообменники пользуются спросом у потребителей и не теряют своих позиций на рынке. Это обусловлено немалым количеством достоинств, которыми обладают эти устройства:

  1. Высокая стойкость к . Это помогает им легко переносить перепады давления и выдерживать серьезные нагрузки.
  2. Не нуждаются в чистой среде. Это значит, что они могут работать с некачественной жидкостью, не прошедшей предварительной очистки, в отличие от множества других видов теплообменников, которые способны работать исключительно в не загрязненных средах.
  3. Высокая эффективность.
  4. Износостойкость.
  5. Долговечность. При должном уходе кожухотрубчатые агрегаты будут работать на протяжении многих лет.
  6. Безопасность использования.
  7. Ремонтопригодность.
  8. Работа в агрессивной среде.

Учитывая вышеизложенные преимущества, можно утверждать об их надежности, высокой эффективности и долговечности.


Кожухотрубные теплообменники в промышленности

Несмотря на большое количество отмеченных преимуществ кожухотрубных теплообменников, данные устройства имеют и ряд недостатков:

  • габаритность и значительный вес: для их размещения необходимо помещение значительных размеров, что не всегда является возможным;
  • высокая металлоемкость : это является основной причиной их высокой цены.

Виды и типы кожухотрубных теплообменников

Классифицируются кожухотрубные теплообменники в зависимости от того, в каком направлении двигается теплоноситель .

Выделяют следующие виды по этому критерию:

  • прямоточный;
  • противоточный;
  • перекресточный.

Количество трубок, находящихся в сердце кожуха, напрямую влияет на то, с какой скоростью будет двигаться вещество, а скорость оказывает непосредственное влияние на коэффициент теплопередачи .

Учитывая данные характеристики, кожухотрубные теплообменники бывают следующих типов:

  • c температурным кожуховым компенсатором;
  • c неподвижными трубками;
  • c плавающей головкой;
  • c U-образными трубками.

Модель с U-образными трубками состоит из одной трубной решетки, в которую и вварены данные элементы. Это позволяет округленной части трубки беспрепятственно опираться на поворотные щитки в корпусе, при этом они имеют возможность линейно расширяться, что позволяет их использовать в больших диапазонах температур. Для чистки U-трубок требуется вынимать всю секцию с ними и использовать специальные химические средства.

Расчет параметров

Долгое время кожухотрубные теплообменники считались самыми компактными среди существующих. Однако появились , которые в три раза компактнее кожухотрубных. К тому же, особенности конструкции подобного теплообменника приводят к возникновению температурных напряжений из-за различия температур между трубами и кожухом. Поэтому при выборе подобного агрегата очень важно сделать его грамотный расчет.

Формула расчёта площади кожухотрубчатого теплообменника

F — площадь поверхности теплообмена;
t ср – средняя разность температур между теплоносителями ;
К – коэффициент теплопередачи;
Q — количество теплоты.

Для проведения теплового расчета кожухотрубного теплообменника необходимы следующие показатели:

  • максимальный расход греющей воды;
  • физические характеристики теплоносителя : вязкость, плотность, теплопроводность, конечная температура, теплоемкость воды при средней температуре.

При осуществлении заказа кожухотрубчатого теплообменника важно знать, какими техническими характеристиками он обладает:

  • давление в трубах и кожухе;
  • диаметр кожуха;
  • исполнение (горизонтальное\вертикальное);
  • тип трубных решеток (подвижные\неподвижные);
  • климатическое исполнение.

Самостоятельно сделать грамотный расчет достаточно сложно. Для этого необходимы знания и глубокое понимание всей сути процесса его работы, поэтому лучшим способом станет обращение к специалистам.

Эксплуатация трубчатого теплообменника

Кожухотрубный теплообменник является устройством, которое характеризуется высокой продолжительностью срока службы и хорошими параметрами эксплуатации. Однако, как и любому другому устройству, для качественной и долговременной работы ему необходимо плановое обслуживание. Поскольку в большинстве случаев кожухотрубные теплообменники работают с жидкостью, которая не прошла предварительную очистку, трубки агрегата рано или поздно засоряются и на них образуется осадок и создается препятствие для свободного протекания рабочей жидкости.

Чтобы эффективность работы оборудования не снижалась и не произошла поломка кожухотрубного агрегата, следует систематически проводить его чистку и промывку.

Благодаря этому он сможет осуществлять качественную работу на протяжении длительного времени. По истечению срока действия прибора, рекомендуется осуществить замену его на новый.

Если возникла потребность в ремонте трубчатого теплообменника, то первоначально необходимо произвести диагностику устройства. Это позволит выявить основные проблемы и определит объем предстоящей работы. Самая слабая его часть — это трубки, и, чаще всего, основным поводом ремонта является повреждение трубчатки.

Для диагностики кожухотрубного теплообменника используется метод гидравлических испытаний.

В сложившейся ситуации необходимо произвести замену трубок, а это трудоемкий процесс. Необходимо заглушить вышедшие из строя элементы, в свою очередь это сокращает площадь теплообменной поверхности. Осуществляя ремонтные работы, обязательно нужно учитывать тот факт, что любое, даже малейшее вмешательство, может стать причиной уменьшения теплообмена.

Теперь вы знаете, как устроен кожухотрубный теплообменник, какие есть у него разновидности и особенности.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!