Повышающая насосная станция. Насос для повышения давления воды в квартире или частном доме

Страница 4 из 10

Проектирование и схемы наружной очистки поверхностей нагрева котлов “ЗиОМАР”

Майданик Μ. Н., Щелоков В. И., Пухова Н. И.

Средства наружной очистки поверхностей нагрева

Топочные
экраны

полурадиационные и конвективные поверхности (под давлением)

Воздухоподогреватели

Аппараты:

водяной обдувки

паровой обдувки Устройства:

паровой “пушечной” обдувки

газоимпульсной
очистки

вибрационной
очистки

звуковой очистки

Установки дробевой очистки

Шлакование и загрязнение поверхностей нагрева топочных камер и конвективных газоходов являются одной из основных проблем при проектировании и освоении пылеугольных котлов, сжигающих низкосортные бурые, каменные угли и лигниты. Только одними конструктивными и режимными мероприятиями в большинстве случаев не удается обеспечить длительную бесшлаковочную кампанию таких котлов, поэтому наряду с ними на котлах ЗиО широко применяется установка различных средств наружной очистки поверхностей нагрева.
Средства очистки в отечественной и зарубежной практике, в основном применяемые в качестве эксплуатационных, приведены далее.

Область применения

Устройства звуковой очистки не получили большого распространения как из-за ограниченных возможностей по удалению золовых отложений, так и экологических проблем. То же относится и к вибрационной очистке, которая требует специальных конструктивных решений для очищаемых поверхностей нагрева и может снижать их ресурс. Такие устройства могут оказаться необходимыми при сжигании топлива с высокой коррозионной активностью минеральной части, как например, у эстонских сланцев.
В качестве альтернативного решения предпочтительней применение устройств газоимпульсной очистки. Они имеют сравнительно простую конструкцию, но при образовании прочных связанных отложений обладают существенно меньшей эффективностью, чем аппараты паровой обдувки. Как показал опыт эксплуатации котла П-67 на Березовской ГРЭС-1, при сжигании березовского угля устройства газоимпульсной очистки поверхностей нагрева конвективной шахты оказались неэффективными.
Импульсные устройства очистки хорошо зарекомендовали себя при удалении сыпучих и рыхлых слабосвязанных золовых отложений, при этом они больше пригодны для сравнительно небольших котлов и для локальной очистки полурадиационных, конвективных поверхностей нагрева, включая регенеративные воздухоподогреватели. Применение их возможно на электростанциях с постоянным источником газоснабжения.
Установки дробевой очистки наиболее приспособлены для очистки трубчатых воздухоподогревателей, а также гладкотрубных экономайзеров со сравнительно тесными пучками труб. Они могут успешно применяться при условии проведения регулярного и постоянного техобслуживания на электростанциях со сравнительно высокой культурой эксплуатации. В то же время конструкции их требуют доработки. Наиболее современные технические решения (отработанные в свое время на заводе “Котлоочистка”) не были внедрены в промышленное производство.
Водяная и паровая обдувка являются наиболее универсальными в большинстве случаев для своей области применения и самыми эффективными методами очистки поверхностей нагрева. На котлах ЗиО они применяются в качестве основных средств очистки топочных экранов, полурадиационных и конвективных поверхностей нагрева.

Водяная обдувка.

Для очистки топочных экранов в большинстве случаев используются аппараты водяной обдувки, которые являются наиболее эффективным средством удаления наружных отложений золы. Аппараты паровой обдувки устанавливаются в топочной камере в случае невозможности использования водяной обдувки по условиям надежности металла труб (в частности, для некоторых радиационных пароперегревателей, имеющих сравнительно высокую температуру металла труб). Паровая обдувка топочных экранов может также использоваться при сжигании углей с низкой склонностью к шлакованию.
В качестве устройств водяной обдувки экранов топочной камеры применяются два типа аппаратов:
дальнобойные аппараты, которые колебательным реверсивным движением сопла направляют струю через топку, осуществляя обдувку противоположной и боковых стен;
маловыдвижные аппараты, осуществляющие при выдвижении сопловой головки в топку обдувку “на себя”.
Аппараты могут применяться как самостоятельно, так и в сочетании друг с другом для повышения эффективности очистки и большей полноты охвата стен топки. Выбор типа и параметров аппаратов, схемы обдувки определяется конструкцией топочногорелочного устройства, размерами топки, интенсивностью и характером загрязнения. При проектировании схем очистки топочных камер используется специально разработанная компьютерная программа. Программа позволяет определять оптимальное расположение, число и тип аппаратов, конфигурацию и размеры зон обдувки отдельных аппаратов и общей очищаемой зоны топочной камеры, выбрать оптимальные параметры аппаратов и рабочего агента. При разработке программы обобщены результаты исследований очистки топочных экранов, проведенные в ВТИ, СибВТИ, ЗиО и других организациях, а также многолетний опыт эксплуатации аппаратов водяной и паровой обдувки на отечественных и зарубежных котлах.
Дальнобойные аппараты водяной обдувки обеспечивают эффект очистки преимущественно за счет термического воздействия на слой золовых отложений водяных струй. Они имеют большую площадь охвата стен топочной камеры, для очистки всей топки обычно необходима установка всего четырех - восьми аппаратов на котел. Эти аппараты удобно использовать для очистки холодных воронок и межгорелочных зон топки, они позволяют осуществлять очистку окон газозаборных шахт (со стороны топки) и амбразур горелок. Система водяной обдувки с аппаратами такого типа (конструкции завода “Котлоочистка”) была успешно применена ЗиО, в частности, на котлах П-64 энергоблоков 300 МВт ТЭС “Гацко” и “Углевик” (Югославия), сжигающих югославские лигниты.
В настоящее время такая же схема очистки топки спроектирована и поставляется ЗиО для котлов к энергоблокам 210 МВт ТЭС “Нейвели” (Индия), рассчитанных на сжигание низкосортных углей (лигниты). Котел имеет башенную компоновку с размерами топки в плане 13,3 х 13,3 м и высотой ее вертикальной части около 30 м. Для очистки топки предусмотрена установка восьми дальнобойных аппаратов, которые обеспечивает обдувку практически всей топочной камеры с достаточной эффективностью струи.
Для котлов с крупногабаритными топочными камерами эффективность очистки дальнобойными аппаратами снижается вследствие ограниченной дальнобойности водяных струй, в особенности в условиях работы топочных камер котлов. Кроме того, примененные отечественные дальнобойные аппараты обладают недостаточной надежностью, имеют ряд конструктивных недостатков, плохо приспособлены для локальной, выборочной очистки отдельных зон топочной камеры. В связи с этим в схемах очистки топочных камер котлов ЗиО начали широко применять маловыдвижные аппараты водяной обдувки. Эти аппараты обычно имеют радиус обдувки до 4 - 4,5 м и формируют струю с большим гидродинамическим воздействием на слой золовых отложений, чем у дальнобойных аппаратов.
Первые отечественные промышленные маловыдвижные аппараты были установлены на котлах П-67 Березовской ГРЭС-1. Испытания их показали, что аппараты такого типа могут обеспечить хорошую эффективность очистки для углей с очень высокой склонностью к шлакованию.
В последние годы маловыдвижные водяные аппараты устанавливаются в котлах ЗиО как для полной очистки топочных камер, так и для локальной очистки в зонах топки с наибольшей интенсивностью загрязнения. Схема очистки топки с использованием только маловыдвижных аппаратов реализована на котле П-78 энергоблока 500 МВт ТЭС “Иминь” (Китай), сжигающем бурый уголь. На этом котле установлено 82 маловыдвижных водяных аппарата, изготовленных на ЗиО. В настоящее время на системе водяной обдувки проводятся пусконаладочные работы. Аналогичная схема очистки топки запроектирована для реконструируемого котла П-50Р Каширской ГРЭС, где они должны заменить паровые обдувочные аппараты.
На котле ОР-210М ТЭС “Скавина” (Польша), сжигающем каменный уголь, реконструкцию которого осуществлял завод, было установлено шесть маловыдвижных водяных аппаратов типа SK-58-6E фирмы “Clyde- Bergemann” (Германия). Аппараты были применены для очистки зоны топки в районе верхнего яруса горелок и над горелками, где предполагалась наибольшая интенсивность загрязнения. В указанных зонах аппараты обеспечивали приемлемую эффективность очистки, но они не смогли справиться со шлакованием амбразур горелок, находящихся в зоне действия аппаратов. Последнее во многом объясняется тем, что водяная струя аппаратов, направляемая поперек горелок, сносится потоком пылегазовоздушной смеси. Это ограничивает возможности очистки маловыдвижными аппаратами горелочной зоны топок, в особенности для современных схем расположения горелочных устройств и стесненных компоновок пылегазовых воздухопроводов.
В рассматриваемом котле для очистки всей горелочной зоны топки предполагается установить дальнобойные аппараты водяной обдувки. Система водяной обдувки топки с установкой дальнобойных и маловыдвижных аппаратов водяной обдувки разработана для котла Еп-670-140 энергоблока 210 МВт ТЭС “Плевля” (Югославия), реконструкция которого (с переводом на сжигание широкой гаммы лигнитов и бурых углей) проводится на ЗиО. В системе на четырех ярусах по высоте топки предусмотрена установка восьми дальнобойных (на ярусах первом и четвертом) и 12 маловыдвижных аппаратов (на ярусах втором и третьем). На ярусах первом и четвертом на каждой стене топки установлен один дальнобойный аппарат, на втором ярусе - один маловыдвижной аппарат. На третьем ярусе на каждой стене топки установлено два маловыдвижных аппарата.
Применение дублирующих средств очистки диктуется необходимостью по условиям загрязнения топочных экранов интенсивной очистки локальных зон топки. В этом случае наиболее полно реализована практически вся технологическая схема системы водяной обдувки, комплектуемая общим щитом управления, с помощью которого осуществляется автоматическое и дистанционное управление работой всех обдувочных аппаратов и схемы подвода воды.
Требуемые параметры воды в системе обеспечиваются насосной установкой, оборудованной двумя насосами ЦНС-38-198. Во время обдувки снабжение аппаратов водой осуществляется от какого-либо одного насоса, другой находится в резерве.
На трубопроводе подвода воды к насосной установке установлены запорный клапан, фильтр для исключения попадания в насос и аппараты твердых частиц больших размеров, показывающий манометр для контроля давления воды в подводящем трубопроводе. На всасывающих и напорных трубопроводах насосной установки используются запорные клапаны и обратные клапаны для отключения насоса, находящегося в резерве, и предотвращения обратных токов воды.
На общем напорном трубопроводе насосной установки устанавливается регулирующий клапан, который используется для общего регулирования давления воды в системе (при наладке системы). Для автоматического управления и контроля работы системы далее по ходу воды устанавливаются запорный клапан с электроприводом, датчик давления воды и показывающий манометр.
Из напорного трубопровода насосной установки вода поступает в подъемный стояк и далее трубопроводами раздается по ярусам установки аппаратов. Трубопроводы подвода воды к аппаратам на отдельных ярусах закольцованы. От кольцевого трубопровода вода через трубопроводы подводится к каждому аппарату на ярусе (к запорному клапану аппарата).
На трубопроводах подвода воды к аппаратам (по ярусам) устанавливаются регулирующие клапаны и датчики давления. Регулирующие клапаны используются для регулирования давления перед аппаратами (при наладке системы), датчики давления - для контроля работы системы.
Подъемный стояк оборудуется линией дренажа, на котором устанавливается запорный клапан с электроприводом. Этот клапан используется для автоматического управления работой системы.

Паровая обдувка.

В настоящее время для очистки полурадиационных и конвективных поверхностей в основном применяются аппараты паровой обдувки. В труднодоступных местах могут также дополнительно устанавливаться устройства паровой “пушечной” обдувки.

Обдувка трубных пучков осуществляется преимущественно глубоковыдвижными аппаратами с винтовым движением сопловой трубы. Для котлов мощных блоков требуемая глубина выдвижения обдувочной трубы достигает 10-12 м. В отдельных случаях (в основном по условиям компоновки и конструкции поверхностей нагрева) могут использоваться глубоковыдвижные аппараты маятникового типа, осуществляющие секторную обдувку, многосопловые винтовые - только с вращательным движением обдувочной трубы, которая постоянно находится в газоходе (при сравнительно невысокой температуре газов), и др.
При проектировании систем паровой обдувки для выбора параметров рабочего агента, типоразмеров и схем расположения аппаратов используются газодинамические расчеты сопл и динамических напоров струй, эффективных радиусов действия аппаратов. Программы расчета базируются на результатах экспериментальных исследований паровой обдувки, проведенных ВТИ и СибВТИ, в том числе по заказу завода.
В последние годы котлы ЗиО комплектуются аппаратами паровой обдувки фирмы “Clyde-Bergemann”. Глубоковыдвижные аппараты этой фирмы были, в частности, успешно применены на уже упомянутых котлах П-78 ТЭС “Иминь” и ОР-210М ТЭС “Скавина”.
Характерная технологическая схема паровой обдувки с различными типами паровых обдувочных аппаратов спроектирована для реконструируемого котла Еп-670-140 ТЭС “Плевля”. В системе паровой обдувки используются три типа аппаратов: для очистки пакетов пароперегревателей, расположенных в поворотном газоходе, 14 глубоковыдвижных аппаратов типа PS-SL, для очистки скатов поворотного газохода - шесть глубоковыдвижных маятниковых аппаратов типа RK-PL с ограниченным сектором обдувки и для очистки пакетов пароперегревателя, расположенных в конвективной шахте, семь винтовых аппаратов типа PS-SB, обдувочная труба которых постоянно находится в газоходе. В поворотном газоходе аппараты симметрично установлены на правой и левой боковых стенах (на разных отметках по высоте), в конвективной шахте - на одной стене шахты котла.
В качестве рабочего агента используется перегретый пар, подаваемый к аппаратам после редукционной установки с давлением 3-4 МПа. Следует отметить, что при подводе пара в систему из тракта промежуточного перегрева пара в технологическую схему дополнительно включается регулятор давления пара (для поддержания постоянного давления перед аппаратами при изменении нагрузки котла). Все аппараты оборудованы встроенным запорным дроссельным клапаном, настраиваемым так, чтобы при обдувке давление пара в обдувочной трубе аппаратов составляло 1,2 - 1,6 МПа. Требуемый динамический напор струи устанавливается при этом за счет выбора соответствующего диаметра сопл.
Подвод пара в систему (после редукционной установки) осуществляется по общему трубопроводу диаметром 133/113 мм с установленными на нем ручным запорным вентилем, запорным вентилем с электроприводом, который используется для автоматического управления системой, и манометром для контроля давления пара на входе в систему. Общий трубопровод оборудуется линией дренажа.
Из общего трубопровода пар раздается по двум трубопроводам диаметром 89/81 мм, подводящим пар сначала к аппаратам PS-SB, установленным в конвективной шахте, а затем к аппаратам PS-SL и RK-PL, расположенным на левой и правой боковых стенах. В конце подводящих трубопроводов устанавливаются контактные манометры и термометры, а также дренажные линии, которые используются для продувки и прогрева трубопроводов системы перед включением аппаратов. На дренажных линиях устанавливаются запорные вентили с электроприводом, байпасы с дроссельными шайбами и запорные вентили.
Манометры, термометры и дренажные вентили с электроприводом используются для автоматического управления работой системы. Байпасы (с дроссельной шайбой) трубопроводов дренажей необходимы для обеспечения при обдувке постоянного протока пара по трубопроводам подвода пара к аппаратам, чтобы исключить конденсацию пара в них. Запорный вентиль на общем трубопроводе и запорные вентили на дренажных трубопроводах используются при проведении ремонтных работ и в аварийных ситуациях.
Система паровой обдувки комплектуется общим щитом управления, с помощью которого осуществляется автоматическое и дистанционное управление работой всех обдувочных аппаратов и арматуры, прогревом и дренажом системы.
В настоящее время котлы ЗиО, предназначенные для сжигания шлакующего топлива, комплектуются комплексными системами очистки, включающими в себя в основном аппараты водяной и паровой обдувки, системы автоматического управления, системы подвода рабочего агента с запорно-регулирующей арматурой. В отдельных случаях они могут быть дополнены устройствами паровой “пушечной” обдувки, а также и другими средствами очистки.

Изобретение относится к области теплоэнергетики и может быть использовано для очистки поверхностей нагрева жаротрубных и газотрубных котлов и других теплообменных аппаратов от золовых отложений. Устройство включает камеру сгорания с выхлопными соплами, рассредоточенными вдоль ее продольной оси, патрубки подвода топлива и воздуха, смеситель, соединенный со смесепроводом, часть которого, расположенная внутри камеры сгорания, перфорирована на участках между выхлопными соплами, источник зажигания, блок управления, связанный линией управления с источником зажигания. На газовой камере котла установлены сообщающиеся с ее объемом направляющие ударные штуцера, соединенные посредством волноводов с выхлопными соплами и направленные на загрязненные внутренние поверхности труб котла, выходящие через трубную доску в объем газовой камеры котла, причем блок управления дополнительно соединен линиями управления с электромагнитным клапаном на патрубке подвода топлива и с электромагнитным клапаном на патрубке подвода воздуха. Техническое решение позволяет осуществлять эффективную очистку трубных пучков поверхностей нагрева за счет рационального распределения и доставки энергии ударных волн системой волноводов к ударным штуцерам и точного направления ударных направляющих штуцеров на загрязненные поверхности нагрева. 1 ил.

Рисунки к патенту РФ 2504724

Изобретение относится к области теплоэнергетики, к технике очистки поверхностей нагрева жаротрубных и газотрубных котлов и других теплообменных аппаратов от золовых отложений и может быть использовано в устройствах различных отраслей народного хозяйства.

Известно устройство для очистки поверхностей нагрева, содержащее камеру сгорания с выхлопным соплом, смеситель с патрубками для подвода газа и воздуха, запальную камеру с периодически действующим запальником, пламепровод, соединяющий запальную камеру с камерой сгорания, при этом камера сгорания заглушена с обоих концов, а выхлопное сопло размещено параллельно продольной оси с образованием в камере сгорания двух отсеков, сообщенных с ним (SU 1580962, МПК: F28G 1/16, опубликовано 09.02.1988).

Недостатком известного устройства является невозможность равномерного распределения энергии ударного импульса по трубной доске и по трубам трубного пучка котла, выходящим через трубную доску в газовую камеру котла.

Известно устройство для импульсной очистки осадительных поверхностей электрофильтров, содержащее камеру сгорания, закрытую с обеих сторон, с выхлопными соплами и патрубками подвода топлива и воздуха, смеситель, источник зажигания и смесепровод, часть которого расположена внутри камеры сгорания, при этом выхлопные сопла расположены внутри камеры сгорания и рассредоточены вдоль ее продольной оси, а смесепровод внутри камеры сгорания перфорирован на участках, расположенных между выхлопными соплами (RU № 2027140 МПК: F28G 7/00, опубликован 20.01.1995.

Это известное устройство является наиболее близким в заявляемому и принято за прототип.

Недостатками известного устройства для импульсной очистки поверхностей нагрева является то, что оно не обеспечивает эффективную очистку поверхностей нагрева жаротрубных и газотрубных котлов из-за отсутствия конструктивных элементов для рационального распределения и точного направления ударно-волнового воздействия на внутритрубные отложения в трубных пучках и на трубных досках. В известном устройстве выхлопные сопла однонаправленные, что делает невозможным рациональное распределение ударных импульсов по поверхности нагрева трубного пучка. Известное устройство не автоматизировано, что снижает его технический уровень.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, а также выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил технического решения, характеризующегося признаками, тождественными или эквивалентными предлагаемым.

Определение из перечня выявленных аналогов прототипа, как наиболее близкого технического решения по совокупности признаков, позволило выявить в заявленном устройстве совокупность существенных отличительных признаков по отношению к усматриваемому заявителем техническому результату, изложенную в нижеприведенной формуле изобретения.

Заявляемое техническое решение позволяет осуществлять эффективную очистку трубных пучков поверхностей нагрева и трубных досок жаротрубных и газотрубных котлов за счет рационального распределения и доставки энергии ударных волн системой волноводов к ударным штуцерам и точного направления ударных направляющих штуцеров на загрязненные поверхности нагрева.

Предложено устройство для импульсной очистки поверхностей нагрева жаротрубных и газотрубных котлов, включающее камеру сгорания, закрытую с обеих сторон, с выхлопными соплами, расположенными внутри камеры сгорания и рассредоточенными вдоль ее продольной оси, патрубки подвода топлива и воздуха, смеситель, соединенный со смесепроводом, часть которого, расположенная внутри камеры сгорания, перфорирована на участках между выхлопными соплами, источник зажигания, а также блок управления, связанный линией управления с источником зажигания, при этом на газовой камере котла установлены сообщающиеся с ее объемом направляющие ударные штуцера, соединенные посредством волноводов с выхлопными соплами и направленными на загрязненные внутренние поверхности труб котла, выходящие через трубную доску в объем газовой камеры котла, причем блок управления дополнительно соединен линиями управления с электромагнитным клапаном на патрубке подвода топлива и с электромагнитным клапаном на патрубке подвода воздуха.

Изобретение иллюстрируется чертежом.

Устройство включает камеру сгорания 1, закрытую с обеих сторон, с выхлопными соплами 2, расположенными внутри камеры сгорания 1 и рассредоточенными вдоль ее продольной оси, патрубки подвода топлива 3 и воздуха 4, смеситель 5, соединенный со смесепроводом 6. Часть смесепровода 6, расположенная внутри камеры сгорания 1, перфорирована на участках между выхлопными соплами 2. Источник зажигания 7 соединен со смесепроводом 6. Блок управления 8 связан линией управления с источником зажигания 7. На газовой камере котла 9 установлены сообщающиеся с ее объемом направляющие ударные штуцера 10, соединенные посредством волноводов 11 с выхлопными соплами 2. Ударные штуцера 10 направлены на загрязненные внутренние поверхности труб котла 12, выходящие через трубную доску 13 в объем газовой камеры котла 9. Блок управления 8 дополнительно соединен линиями управления с электромагнитным клапаном 14 на патрубке подвода топлива 3 и с электромагнитным клапаном 15 на патрубке подвода воздуха 4.

Устройство работает следующим образом. После нажатия на блоке управления 8 кнопки «Пуск» открывается электромагнитный клапан 14 на патрубке подвода топлива 3 и электромагнитный клапан 15 на патрубке подвода воздуха 4 к смесителю 5. Топливовоздушная смесь по смесепроводу 6 из смесителя 5 поступает в камеру сгорания 1. После заполнения камеры сгорания 1 топливовоздушной смесью, автоматически подается напряжение на периодически действующий источник зажигания 7, который воспламеняет топливовоздушную смесь и, пламя по смесепроводу 6 поступает в камеру сгорания 1, вызывая в ней взрывное горение смеси. Из камеры сгорания 1 продукты взрывного горения выбрасываются через выхлопные сопла 2 и генерируют ударно-акустические волны, которые по волноводам 11 распределяются по ударным направляющим штуцерам 10 на газовой камере котла 9 и направляются на трубную доску 13 и внутритрубные загрязненные поверхности нагрева котла 12. При этом за счет рационального распределения и доставки энергии ударных волн системы волноводов к ударным штуцерам 10 и точного направления ударных распределительных штуцеров 10 на загрязненные поверхности нагрева 12, достигается эффективная очистка трубной доски 13 и трубного пучка котла от внутритрубных загрязнений. После выполнения заданного программой цикла очистки, из блока управления 8 подаются команды на закрытие электромагнитных клапанов топлива 3 и воздуха 4 и прекращение работы источника зажигания 7.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Устройство для импульсной очистки поверхностей нагрева жаротрубных и газотрубных котлов, включающее камеру сгорания, закрытую с обеих сторон, с выхлопными соплами, расположенными внутри камеры сгорания и рассредоточенными вдоль ее продольной оси, патрубки подвода топлива и воздуха, смеситель, соединенный со смесепроводом, часть которого, расположенная внутри камеры сгорания, перфорирована на участках между выхлопными соплами, источник зажигания, а также блок управления, связанный линией управления с источником зажигания, отличающееся тем, что на газовой камере котла установлены сообщающиеся с ее объемом направляющие ударные штуцера, соединенные посредством волноводов с выхлопными соплами и направленные на загрязненные внутренние поверхности труб котла, выходящие через трубную доску в объем газовой камеры котла, при этом блок управления дополнительно соединен линиями управления с электромагнитным клапаном на патрубке подвода топлива и с электромагнитным клапаном на патрубке подвода воздуха.

Классификация наружных отложений

В составе золы имеются в небольшом количестве легкоплавкие соединения с температурой плавления 700 – 850 о С. Это в основном хлориды и сульфаты щелочных металлов . В зоне высоких температур ядра факела они переходят в парообразное состояние и затем конденсируются на поверхности труб, так как температура чистой стенки всегда менее 700 о С.

Среднеплавкие компоненты золы с температурой плавления 900 – 1100 о С могут образовать первичный липкий слой на экранных трубах и ширмах, если в результате не налаженного топочного режима факел будет касаться стен топки, и вблизи экранных труб будет находиться высокотемпературная газовая среда.

Тугоплавкими компонентами золы являются, как правило, чистые окислы . Температура их плавления (1600 – 2800 о С) превышает максимальную температуру ядра факела, поэтому они проходят зону горения без изменения своего состояния, оставаясь твердыми. Ввиду малых размеров частиц эти компоненты в основном уносятся потоком газов и составляют летучую золу.

В зоне высоких температур газов (выше 700 – 800 о С) на поверхности чистой трубы вначале происходит конденсация из газового потока легкоплавких соединений и образуется первичный липкий слой на трубах. На него одновременно налипают твердые частицы золы. Затем он отвердевает и становиться плотным первоначальным слоем отложений, крепко сцепленным с поверхностью трубы. Температура наружной поверхности слоя повышается и конденсация прекращается.

Далее на шероховатую поверхность этого слоя набрасываются мелкие и твердые частицы тугоплавкой золы, образуя внешний сыпучий слой отложений. Таким образом, в этой области температур газов на поверхности труб чаще всего присутствуют два слоя отложений: плотный и сыпучий .

Сыпучие отложения распространены в зоне относительно низких температур газового потока (менее 600 – 700 о С), характерных для поверхности конвективной шахты.

Сыпучие отложения преимущественно образуются на тыльной стороне трубы по отношению к направлению газового потока, в образующейся сзади трубы вихревой зоне (рисунок 3.32). На лобовой стороне сыпучие отложения образуются лишь при малых скоростях потока (менее 5 – 6 м/с) или при наличии в потоке очень тонкой летучей золы.

Частицы золы, участвующие в образовании сыпучих отложений разделяют на три группы.

К первой группе относят самые мелкие фракции, так называемые безынерционные частицы, которые настолько малы, что двигаются по линиям тока газов, и поэтому вероятность их осаждения на трубах мала. Предельный размер частиц, относящихся к этой группе, составляет около 10 мкм.



Ко второй группе относятся крупные фракции размером свыше 30 мкм. Эти частицы обладают достаточно большой кинетической энергией и при контакте с сыпучими отложениями разрушают их.

Третью группу составляют фракции золы размером от 10 до 30 мкм. При обтекании газовым потоком трубы эти частицы преимущественно оседают на ее поверхности и образуют слой отложений. В результате размер слоя сыпучих отложений определяется динамическим равновесием процессов постоянного оседания средних фракций золы и разрушения осевшего слоя более крупными частицами.

Рисунок 3.32 – Загрязнение труб сыпучими отложениями при разных направлениях и скоростях движения газов

Одним из методов очистки поверхностей нагрева является использование динамического воздействия на слой отложений струи пара, воды или воздуха. Действенность струй определяется их дальнобойностью, в пределах которой струя сохраняет достаточный динамический напор для разрушения отложений. Наибольшей дальнобойностью и термическим эффектом воздействия на плотные отложения обладает водяная струя.

Аппараты этого типа находят применение для очистки экранов топочных камер. Однако обдувка водой требует строго расчета, чтобы исключить резкое переохлаждение металла после удаления отложений.

Для очистки радиационных поверхностей нагрева и конвективных перегревателей широкое распространение получили многосопловые выдвижные аппараты, работающие на насыщенном или перегретом паре с давлением около 4 МПа.

Для очистки ширм и коридорных трубных пакетов в области горизонтального газохода применяют вибро-очистку. Ее действие основано на том, что при колебании труб с большой частотой нарушается сцепление отложений с металлом. В этих целях используют вибраторы с водоохлажденными штангами, передающими воздействие на очищаемую поверхность.

Наиболее эффективным способом очистки конвективных поверхностей в опускной шахте парового котла от сыпучей золы является дробеочистка . В этом случае используют кинетическую энергию падающих чугунных дробинок диаметром 3 – 5 мм. Дробь подается вверх воздушным потоком и распределяется по всему сечению шахты. Расход дроби на очистку определяют исходя из оптимальной интенсивности «орошения» дробью – 150 – 200 кг/м 2 сечения конвективной шахты. Время очистки составляет обычно 20 – 60 с.

Обязательным условием успешного использования дробевой очистки является регулярность ее применения сразу после пуска котла в эксплуатацию при еще практически чистых поверхностях нагрева.

В последнее время находит распространение метод термоволновой очистки поверхностей нагрева конвективной шахты при помощи акустических низкочастотных волн, генерируемых в специальной импульсной камере взрывного горения.

Очистку вынесенных за пределы котла регенеративных воздухоподогревателей (РВП) осуществляют путем обдувки теплообменной набивки РВП перегретым паром (на 170 – 200 о С выше температуры насыщения), реже применяют обмывку водой (липкие отложения она удаляет, но увеличивает коррозию), а также применяют метод ударной волновой очистки и термический способ очистки . Последний основан на периодическом повышении температуры набивки до 250 – 300 о С за счет отключения подачи воздуха в аппарат РВП. При этом высушиваются липкие отложения и испаряется сконденсировавшаяся серная кислота.

В процессе эксплуатации котла для очистки экранных поверхностей нагрева применяется паровая и пароводяная их обдувка, а также вибрационную очистка наружных поверхностей нагрева от загрязнений. Для конвективных поверхностей нагрева используют паровую и пароводяную обдувку, вибрационную, дробевую и акустическую очистку или самообдувку. Наибольшее распространение имеют паровая обдувка и дробевая очистка. Для ширм и вертикальных пароперегревателей наиболее эффективной является вибрационная очистка. Радикальным является применение самообдувающихся поверхностей нагрева с малым диаметром и шагом труб, при которых поверхности нагрева непрерывно поддерживаются чистыми. Эффективность очистки поверхностей нагрева с помощью указанных устройств определяется коэффициентом изменения аэродинамического сопротивления газового тракта котла е = ∆р к /∆т и изменения его тепловой мощности ϕ = ∆Q/∆т, где ∆р к -увеличение сопротивления газового тракта котла, Па; ∆Q - уменьшение тепловой мощности котла, кВт; ∆т - период между очистками, ч. Увеличение коэффициентов е и ϕ указывает на необходимость уменьшения периода времени между очистками.

Паровая обдувка. Очистка наружных поверхностей нагрева от загрязнений может производиться за счет динамического воздействия струй воды, пара, пароводяной смеси или воздуха. Действенность струй определяется их дальнобойностью. Зависимость относительной скорости струи при данном давлении от относительного ее расстояния применительно к воздуху, пару, пароводяной смеси выражается формулой

где w 1 и w 2 - скорости на расстоянии I от сопла и на выходе из него; d 2 -выходной диаметр сопла.

Наибольшей дальнобойностью и термическим эффектом, способствующим растрескиванию шлака, обладает струя воды. Однако обдувка водой может вызвать переохлаждение труб экранов и повреждение их металла. Воздушная струя имеет резкое снижение скорости, создает небольшой динамический напор и эффективна только при давлении не менее 4 МПа. Применение воздушной обдувки затруднено необходимостью установки компрессоров высокой производительности и давления. Наиболее распространена обдувка с применением насыщенного и перегретого пара. Струя пара имеет небольшую дальнобойность, но при давлении более 3 МПа ее действие достаточно эффективно. Давление у обдуваемой поверхности, Па, определяется по формуле

где w 1 , v 1 - осевая скорость и удельный объем обдувочной среды на расстоянии l от сопла. При давлении пара 4 МПа перед обдувочным аппаратом давление струи на расстоянии примерно 3 м от сопла составляет более 2000 Па.

Для удаления отложений с поверхности нагрева давление струи должно составлять примерно 200-250 Па для рыхлых золовых отложений; 400-500 Па для уплотненных золовых отложений; 2000 Па для оплавленных шлаковых отложений. Расход обдувочного агенту для перегретого и насыщенного пара, кг/с,

где с=519 для перегретого пара, с=493 для насыщенного пара; µ = 0,95; d K -диаметр сопла в критическом сечении, м; р 1 - начальное давление, МПа; v" - начальный удельный объем пара, м 3 /кг.

Аппарат для паровой обдувки топочных экранов показан на рис. 25.6. В качестве обдувающего агента в этом устройстве и аппаратах аналогичной конструкции можно использовать пар при давлении до 4 МПа и температуре до 400 °С. Аппарат состоит из обдувочной трубы для подвода пара и механизма привода. Вначале обдувочной трубе сообщается поступательное движение. Когда сопловая головка вдвигается в топку , труба начинает вращаться. В это время открывается автоматически паровой клапан и пар поступает к двум диаметрально расположенным соплам. После окончания обдувки электродвигатель переключается на обратный ход и сопловая головка возвращается в исходное положение, что предохраняет ее от чрезмерного нагрева. Зона действия обдувочного аппарата до 2,5, а глубина захода в топку до 8 м. На стенках топки обдувочные аппараты размещаются так, чтобы зона их действия охватывала всю поверхность экранов.

Обдувочные аппараты для конвективных поверхностей нагрева имеют многосопловую трубу, не выдвигаются из газохода и только вращаются. Число сопл, расположенных с двух сторон обдувочной трубы, соответствует числу труб в ряду обдуваемой поверхности нагрева. Для регенеративных воздухоподогревателей применяются обдувочные аппараты с качающейся трубой. Пар или вода подводится к обдувочной трубе, и вытекающая из сопла струя очищает пластины воздухоподогревателя. Обдувочная труба поворачивается на определенный угол так, что струя попадает во все ячейки вращающегося ротора воздухоподогревателя. Для очистки регенеративного воздухоподогревателя котлов, работающих на твердом топливе, в качестве обдувочного агента применяется пар, а котлов, работающих на мазуте - щелочная вода. Вода хорошо промывает и нейтрализует сернокислотные соединения, имеющиеся в отложениях.

Пароводяная обдувка. Рабочим агентом обдувочного аппарата служит вода котла или питательная вода. Аппарат представляет собой сопла, установленные между трубами экранов. Вода в сопла подается под давлением, и в результате падения давления при прохождении через сопла из нее образуется пароводяная струя, направленная на противоположно расположенные участки экранов, фестонов, ширм. Большая плотность пароводяной смеси и наличие недоиспарившейся в струе воды оказывают эффективное разрушающее действие на отложения шлака, который удаляется в нижнюю часть топки.

Вибрационная очистка. Вибрационная очистка наружных поверхностей нагрева от загрязнений основана на том, что при колебании труб с большой частотой нарушается сцепление отложений с металлом поверхности нагрева. Наиболее эффективна вибрационная очистка наружных поверхностей нагрева от загрязнений свободно подвешенных вертикальных труб - ширм и пароперегревателей. Для вибрационной очистки преимущественно применяют электромагнитные вибраторы (рис. 25.7).

Трубы пароперегревателей и ширм прикрепляют к тяге, которая выходит за пределы обмуровки и соединяется с вибратором. Тяга охлаждается водой, и место ее прохода через обмуровку уплотнено. Электромагнитный вибратор состоит из корпуса с якорем и каркаса с сердечником, закрепленных пружинами. Вибрация очищаемых труб осуществляется за счет ударов по тяге с частотой 3000 ударов в минуту, амплитуда колебаний 0,3-0,4 мм. Дробеочистка. Дробеочистка применяется для очистки конвективных поверхностей нагрева при наличии на них уплотненных и связанных отложений. Очистка наружных поверхностей нагрева от загрязнений происходит в результате использования кинетической энергии падающих на очищаемые поверхности чугунных дробинок диаметром 3-5 мм. Схема устройства для дробеочистки показана на рис. 25.8. В верхней части конвективной шахты котла помещаются разбрасыватели, которые равномерно распределяют дробь по сечению газохода. При падении дробь сбивает осевшую на трубах золу, а затем вместе с ней собирается в бункерах, расположенных под шахтой. Из бункеров дробь вместе с золой попадает в сборный бункер, из которого питатель подает их в трубопровод, где масса золы с дробью подхватывается воздухом и выносится в дробеуловитель, из которого дробь по рукавам вновь подается в разбрасыватели, а воздух вместе с частицами золы направляется в циклон , где происходит их разделение. Из циклона воздух сбрасывается в газоход перед дымососом , а зола, осевшая в циклоне, удаляется в систему золоудаления котельной установки .

Транспорт дроби осуществляется по всасывающей (рис. 25.8, а) или нагнетательной (рис. 25.8, б) схеме. При всасывающей схеме разрежение в системе создается паровым эжектором или вакуум-насосом. При нагнетательной схеме транспортирующий воздух подается в инжектор от компрессора. Для транспорта дроби необходима скорость воздуха 40-50 м/с.

Расход дроби через систему, кг/с, определяется по формуле

где g др = 100/200 кг/м 2 - удельный расход дроби на 1 м 2 сечения газохода; F г -площадь сечения газохода шахты в плане, м 2 ; n - количество пневмолиний; принимается, что одна пневмолиния обслуживает два разбрасывателя, каждый из которых обслуживает сечение по газоходу, равное 2,5X2,5 м; т - продолжительность периода очистки, с. Обычно т = 20/60 С.

Импульсная очистка наружных поверхностей нагрева от загрязнений основана на ударном воздействии волны газов. Импульсная очистка наружных поверхностей нагрева от загрязнений производится в камере, внутренняя полость которой сообщается с газоходами котла, в которых расположены конвективные поверхности нагрева. В камеру горения периодически подается смесь горючих газов с окислителем, которая воспламеняется искрой. При взрыве смеси в камере повышается давление и при образовании волн газов производится очистка наружных поверхностей нагрева от загрязнений.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!