Конденсационные электростанции. Главные схемы кэс

Кэс Одна тысяча рублей. Обычно это слово используют мажоры. «Эй, мой очки стоят восемь кэсов!» Молодежный сленг

Cловарь современной лексики, жаргона и сленга . 2014 .

Смотреть что такое "кэс" в других словарях:

    КЭС - Котласские электрические сети филиал ОАО «Архэнерго» организация, техн., энерг. Источник: http://pravdasevera.ru/2004/09/02/3.shtml КЭС Кумертауские электрические сети техн. КЭС Комплексные энергетические системы … Словарь сокращений и аббревиатур

    КЭС - КЭС: Конденсационная электростанция. «Комплексные энергетические системы» российская энергетическая компания. Список з … Википедия

    КЭС - керосиномер электрический самолётный киноэлектростанция конденсационная электростанция … Словарь сокращений русского языка

    КЭС-Холдинг - «КЭС Холдинг» Тип частная компания … Википедия

    КЭС-холдинг

    а ла кэс - * Пловцы <на первой росс. олимпиаде 1913 г. в Киеве> соревновались в шести основных видах плавания: на груди (à la caisse; на груди обыкновенный; на груди гоночный; на боку; треджен) вольный стиль, (напоминающий по технике кроль); кроль… …

    грос кэс - * grosse caisse. муз. Барабан. Но так как grossses caisses и тромбоны роли не играют и на постановку нельзя издержать тысяч шестьдесяти, то Жизель и не считается балетом современным. Скальковский В театр. мире … Исторический словарь галлицизмов русского языка

    РД 34.40.503-94: Типовая инструкция по эксплуатации установок подогрева сетевой воды на ТЭС и КЭС - Терминология РД 34.40.503 94: Типовая инструкция по эксплуатации установок подогрева сетевой воды на ТЭС и КЭС: 3.5. Защита по давлению сетевой воды на стороне всасывания СН I и II ступени. Защита локальная и действует на отключение работающих СН … Словарь-справочник терминов нормативно-технической документации

    Конденсационная электростанция - (КЭС) тепловая паротурбинная электростанция, назначение которой производство электрической энергии с использованием конденсационных турбин (См. Конденсационная турбина). На КЭС применяется органическое топливо: твердое топливо,… … Большая советская энциклопедия

    Комплексные энергетические системы - «КЭС Холдинг» Год основания 2002 Ключевые фигуры Михаил Слободин (президент) Расположение … Википедия

Книги

  • Учимся работать с контролируемыми элементами содержания (КЭС). ФГОС , Фомина Н.Б.. Учимся работать с контролируемыми элементами содержания (КЭС). Система оценки достижения планируемых результатов в начальной школе. Методическое пособие. В учебно-методическом пособии… Купить за 354 грн (только Украина)
  • Учимся работать с КЭС. Система оценки достижения планируемых результатов в начальной школе. ФГОС , Фомина Надежда Борисовна. Учимся работать с контролируемыми элементами содержания (КЭС). Система оценки достижения планируемых результатов в начальной школе. Методическое пособие. В учебно-методическом пособии…

Конденсационные электростанции

Конденсационные электростанции (КЭС) - тепловые паротурбинные электростанции, предназначенные для выработки электрической энергии.

Рис. 2.1. Принципиальная технологическая схема конденсационной электростанции, работающей на твердом топливе

Топливо, поступающее на электростанцию, проходит предварительную обработку. Так, наиболее часто используемое на ТЭС твердое топливо (уголь) сначала дробится, а затем подсушивается и на специальных мельничных установках размельчается до пылевидного состояния. Комплекс устройств, предназначенных для разгрузки, хранения и предварительной обработки топлива, составляет топливное хозяйство или топливоподачу. Топливоподача 1 и пылеприготовление 2 образуют топливный тракт КЭС на рис. 2.1.).

Угольная пыль вместе с воздушным потоком, создаваемым специальным насосом (воздуходувкой), подается в топку котла 3. Продукты сгорания топлива проходят через специальные очистительные сооружения 7 (золоуловители), где выделяются зола и другие примеси (при сжигании нефти и газа золоуловители не требуются), а оставшиеся газы с помощью дымососа 6 через дымовую трубу 8 выбрасываются в атмосферу.

Теплота, получаемая при сжигании топлива в котле, используется для получения пара, который перегревается в пароперегревателе 4 и по паропроводу 9 поступает в паровую турбину 10. В турбине энергия пара преобразуется в механическую работу вращения ее вала, который специальной муфтой соединен с валом генератора 13, вырабатывающим электроэнергию. Отработавший в турбине пар после своего расширения от начального давления при входе в турбину 13-24 МПа до конечного (на выходе) 0,0035-0,0045 МПа поступает в специальный аппарат 11 , называемый конденсатором. В конденсаторе пар превращается в воду (конденсат), которая насосом 12 подается обратно в котел, и цикл в пароводяном тракте на рис. 2.1.) повторяется. Для охлаждения пара в конденсаторе используется вода, забираемая циркуляционным насосом 14 из водоема 17.

Таков общий принцип действия КЭС. На такой электростанции в процессе преобразования энергии неизбежны ее потери. Тепловой баланс, представленный на рис. 2.2., дает общее представление об этих потерях.

Рис. 2.2. Тепловой баланс конденсационной электростанции

Совершенство КЭС (ТЭС) определяется ее коэффициент полезного действия (КПД) агрегатов станции. КПД станции без учета расходов энергии на собственные нужды, например привод электродвигателей вспомогательных агрегатов, называется КПД брутто и имеет вид

η бр = [ Э выр / (G ▪ Q r)] ▪ 100% ,

где: Э выр ─ количество выработанной генератором электроэнергии, кДж;

G ─ расход топлива за это же время, кг;

Q r ─ теплота сгорания топлива, кДж/кг.

Коэффициент полезного действия (КПД) современных крупных блочных КЭС не превышает обычно 35%.

Основными элементами ТЭС являются:

Паровой котел. Это сложное техническое сооружение, предназначенное для получения (генерации) пара заданных по давлению и температуре параметров из поступающей в него питательной воды. По конструктивным признакам паровые котлы подразделяются на барабанные и прямоточные.

Упрощенная схема прямоточного котла, приведена на рис. 2.3. Циркуляция воды и пара создается насосами. Конструктивно такой котел состоит из ряда параллельно включенных витков стальных труб, в которые через экономайзер 1 поступает питательная вода. Сначала эта вода поступает в нижнюю часть экранов (витков труб) 2. Здесь она нагревается и, поднимаясь, испаряется, постепенно утрачивая свойства капельной жидкости. В верхней части экранов 3 осуществляется начальный перегрев пара, после чего он поступает в пароперегреватель 4 и далее по паропроводам в турбину. В воздухоподогревателе 5 воздух подогревается перед подачей его в топку, (давление пара свыше 22 МПа).

Рис. 2.3. Упрощенная схема прямоточного парового котла.

Паровая турбина. Паровой турбиной называют тепловой двигатель, преобразующий потенциальную энергию пара сначала в кинетическую энергию, а затем в механическую работу на валу. Преобразование энергии в турбине происходит в два этапа (рис. 2.4.).

На первом этапе пар из паропровода поступает в неподвижное сопло 1 (может быть группа параллельных сопл, образующих так называемую сопловую решетку), где он расширяется и, следовательно, ускоряется в своем движении в направлении вращения рабочих лопаток. Другими словами, пар, проходящий по соплу, теряет свою тепловую энергию (температура и давление снижаются) и повышает кинетическую (скорость увеличивается). После сопл поток пара попадает в каналы, образованные рабочими лопатками 2 , закрепленными на диске 3 и жестко соединенными с вращающимся валом 4. Здесь происходит второй этап преобразования энергии: кинетическая энергия потока превращается в механическую работу вращения ротора турбины (вала с дисками и лопатками).

В зазоре между сопловой и рабочей решетками давление пара не изменяется, оно изменяется в рабочих лопатках.

Рис. 2.4. Схема ступени турбины

Совокупность соплового и лопаточного аппаратов носит название турбинной ступени. Конструктивно турбины выполняются как одноступенчатыми так и многоступенчатыми (рис.2.5.). В последнем случае неподвижные сопловые решетки чередуются с рабочими.

Все крупные турбины делают многоступенчатыми. На рис. 2.5. показана схема активной многоступенчатой турбины, которая включает несколько последовательно расположенных по ходу пара ступеней, сидящих на одном валу. Ступени отделены друг от друга диафрагмами, в которые встроены сопла. В таких турбинах давление падает при проходе пара через сопла и остается постоянным на рабочих лопатках. Абсолютная скорость пара в ступени, называемой ступенью давления, то возрастает - в соплах,

Рис. 2.5. Схема активной турбины с тремя ступенями давления:

1 - сопло; 2 - входной патрубок; 3 - рабочая лопатка 1 ступени; 4 - сопло; 5 - рабочая лопатка 2 ступени; 6 - сопло; 7 - рабочая лопатка 3 ступени; 8 - выхлопной патрубок; 9 - диафрагмы

то снижается - на рабочих лопатках. Так как объем пара по мере его расширения увеличивается, то геометрические размеры проточной части по ходу пара возрастают.

Генератор предназначен для преобразования механического движения (вращения вала турбины) в электрический ток. Электрический ток бывает постоянным и переменным. Но широко

Рис. 2.6. Простейшая установка для выработки переменного электрического тока

применяется переменный ток. Это обусловлено тем, что напряжение и силу переменного тока можно преобразовывать практически без потерь энергии. Переменный ток получают при помощи генераторов переменного тока с использованием явлений электромагнитной индукции. На рис. 2.6. изображена принципиальная схема установка для выработки переменного тока.

Принцип действия установки прост. Проволочная рамка вращается в однородном магнитном поле с постоянной скоростью. Своими концами рамка закреплена на кольцах, вращающихся вместе с ней. К кольцам плотно прилегают пружины, играющие роль контактов. Через поверхность рамки непрерывно будет протекать изменяющийся магнитный поток, но поток, создаваемый электромагнитом, останется постоянным. В связи с этим в рамке возникнет ЭДС индукции.

В мировой промышленной практике широко распространен трехфазный переменный ток, который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными ЭДС с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода.

Конденсатор. Экономичность работы паровой турбины в большой степени зависит от конечного давления пара, с понижением которого увеличивается используемый тепловой перепад и возрастает КПД турбоустановки. Можно сказать, что из трех параметров пара, определяющих экономичность турбины,- начального давления, начальной температуры и конечного давления - последний параметр оказывает наибольшее влияние на КПД турбины.

Рис. 2.7. Схема конденсатора.

Снижение давления пара после выхода его из турбины осуществляется с помощью устройства, называемого конденсатором, в котором поддерживается низкое абсолютное давление, равное 0,005-0,0035 МПа.

В простейшем случае конденсатор представляет собой цилиндрический корпус с большим числом трубок, закрытый с торцов (рис. 2.7.). Охлаждающая вода поступает через патрубок 1 , пройдя по трубкам 2 и нагревшись, она покидает конденсатор через патрубок 3. Пар поступает через патрубок 4, заполняя межтрубное пространство внутри корпуса, соприкасается с холодной наружной поверхностью трубок и конденсируется. Конденсат специальным насосом откачивается через патрубок 5.

Температура охлаждающей воды на входе в конденсатор обычно 12-20° С, на выходе из него 30-35° С. Таким температурам конденсации соответствует глубокий вакуум (0,0035-0,0045 МПа).

Для обеспечения вакуума воздух из конденсатора откачивается с помощью вакуумного насоса через патрубок 6 .

Количество охлаждающей воды для выработки 1 кВт-ч электроэнергии современной мощной конденсационной турбиной составляет от 0,12 до 0,16 м 3 , тогда как для КЭС установленной мощностью 1000 МВт среднегодовой расход воды будет равен не менее 20 м 3 /с. Это немногим меньше, чем, например, летний расход подмосковной р. Пахры близ железнодорожной станции «Ленинская». Нетрудно увидеть, что для технических нужд КЭС мощностью 2000-3000 МВт требуется «солидная» река. Поэтому строительство мощных КЭС возможно лишь вблизи крупных водоемов.

Конденсационная электростанция (КЭС), тепловая паротурбинная электростанция, назначение которой - производство электрической энергии с использованием конденсационных турбин . На КЭС применяется органическое топливо: твердое топливо, преимущественно уголь разных сортов в пылевидном состоянии, газ, мазут и т. п. Тепло, выделяемое при сжигании топлива, передаётся в котельном агрегате (парогенераторе) рабочему телу, обычно - водяному пару. КЭС, работающую на ядерном горючем, называют атомной электростанцией (АЭС) или конденсационной АЭС (АКЭС). Тепловая энергия водяного пара преобразуется в конденсационной турбине в механическую энергию, а последняя в электрическом генераторе - в электрическую энергию. Отработавший в турбине пар конденсируется, конденсат пара перекачивается сначала конденсатным, а затем питательным насосами в паровой котёл (котлоагрегат, парогенератор). Таким образом создаётся замкнутый пароводяной тракт: паровой котёл с пароперегревателем - паропроводы от котла к турбине - турбина - конденсатор - конденсатный и питательные насосы - трубопроводы питательной воды - паровой котёл. Схема пароводяного тракта является основной технологической схемой паротурбинной электростанции и носит название тепловой схемы КЭС.

Для конденсации отработавшего пара требуется большое количество охлаждающей воды с температурой 10-20°С (около 10 м 3 /сек для турбин мощностью 300 Мвт ). КЭС являются основным источником электроэнергии в СССР и большинстве промышленных стран мира; на долю КЭС в СССР приходится 2 / 3 общей мощности всех тепловых электростанций страны. КЭС, работающие в энергосистемах Советского Союза, называют также ГРЭС.

Первые КЭС, оборудованные паровыми машинами, появились в 80-х гг. 19 в. В начале 20 в. КЭС стали оснащать паровыми турбинами. В 1913 в России мощность всех КЭС составляла 1,1 Гвт. Строительство крупных КЭС (ГРЭС) началось в соответствии с планом ГОЭЛРО ; Каширская ГРЭС и Шатурская электростанция им. В. И. Ленина были первенцами электрификации СССР. В 1972 мощность КЭС в СССР составила уже 95 Гвт. Прирост электрической мощности на КЭС СССР составил около 8 Гвт за год. Возросла также единичная мощность КЭС и установленных на них агрегатов. Мощность наиболее крупных КЭС к 1973 достигла 2,4-2,5 Гвт. Проектируются и сооружаются КЭС мощностью 4-5 Гвт (см. табл.). В 1967-68 на Назаровской и Славянской ГРЭС были установлены первые паровые турбины мощностью 500 и 800 Мвт. Создаются (1973) одновальные турбоагрегаты мощностью 1200 Мвт. За рубежом наиболее крупные турбоагрегаты (двухвальные) мощностью 1300 Мвт устанавливаются (1972-73) на КЭС Камберленд (США).

Основные технико-экономические требования к КЭС - высокая надёжность, манёвренность и экономичность. Требование высокой надёжности и манёвренности обусловливается тем, что производимая КЭС электроэнергия потребляется сразу же, т. е. КЭС должна производить столько электроэнергии, сколько необходимо её потребителям в данный момент.

Экономичность сооружения и эксплуатации КЭС определяется удельными капиталовложениями (110-150 руб. на установленный квт ), себестоимостью электроэнергии (0,2-0,7 коп./квт × ч ), обобщающим показателем - удельными расчётными затратами (0,5-1,0 коп./квт × ч ). Эти показатели зависят от мощности КЭС и её агрегатов, вида и стоимости топлива, режимов работы и кпд процесса преобразования энергии, а также местоположения электростанции. Затраты на топливо составляют обычно более половины стоимости производимой электроэнергии. Поэтому к КЭС предъявляют, в частности, требования высокой тепловой экономичности, т. е. малых удельных расходов тепла и топлива, высокого кпд.

Преобразование энергии на КЭС производится на основе термодинамического цикла Ренкина, в котором подвод тепла воде и водяному пару в котле и отвод тепла охлаждающей водой в конденсаторе турбины происходят при постоянном давлении, а работа пара в турбине и повышение давления воды в насосах - при постоянной энтропии .

Общий кпд современной КЭС - 35-42% и определяется кпд усовершенствованного термодинамического цикла Ренкина (0,5-0,55), внутренний относительный кпд турбины (0,8-0,9), механический кпд турбины (0,98-0,99), кпд электрического генератора (0,98-0,99), кпд трубопроводов пара и воды (0,97-0,99), кпд котлоагрегата (0,9-0,94).

Увеличение кпд КЭС достигается главным образом повышением начальных параметров (начальных давления и температуры) водяного пара, совершенствованием термодинамического цикла, а именно - применением промежуточного перегрева пара и регенеративного подогрева конденсата и питательной воды паром из отборов турбины. На КЭС по технико-экономическим основаниям применяют начальное давление пара докритическое 13-14, 16-17 или сверхкритическое 24-25 Мн/м 2 , начальную температуру свежего пара, а также после промежуточного перегрева 540-570 °С . В СССР и за рубежом созданы опытно-промышленные установки с начальными параметрами пара 30-35 Мн/м 2 при 600-650 °С . Промежуточный перегрев пара применяют обычно одноступенчатый, на некоторых зарубежных КЭС сверхкритического давления - двухступенчатый. Число регенеративных отборов пара 7-9, конечная температура подогрева питательной воды 260-300 °С . Конечное давление отработавшего пара в конденсаторе турбины 0,003-0,005 Мн/м 2 .

Часть вырабатываемой электроэнергии потребляется вспомогательным оборудованием КЭС (насосами, вентиляторами, угольными мельницами и т. д.). Расход электроэнергии на собственные нужды пылеугольной КЭС составляет до 7%, газомазутной -до 5%. Значит, часть - около половины энергии на собственные нужды расходуется на привод питательных насосов. На крупных КЭС применяют паротурбинный привод; при этом расход электроэнергии на собственные нужды снижается. Различают кпд КЭС брутто (без учёта расхода на собственные нужды) и кпд КЭС нетто (с учётом расходов на собственные нужды). Энергетическими показателями, равноценными кпд, служат также удельные (на единицу электроэнергии) расходы тепла и условного топлива с теплотой сгорания 29,3 Мдж/кг (7000 ккал/кг ), равные для КЭС 8,8 - 10,2Мдж/квт × ч (2100 - 2450 ккал/квт × ч ) и 300-350 г/квт × ч. Повышение кпд, экономия топлива и уменьшение топливной составляющей эксплуатационных расходов обычно сопровождаются удорожанием оборудования и увеличением капиталовложений. Выбор оборудования КЭС, параметров пара и воды, температуры уходящих газов котлоагрегатов и т. д. производится на основе технико-экономических расчётов, учитывающих одновременно капиталовложения и эксплуатационные расходы (расчётные затраты).

Основное оборудование КЭС (котельные и турбинные агрегаты) размещают в главном корпусе, котлы и пылеприготовительную установку (на КЭС, сжигающих, например, уголь в виде пыли) - в котельном отделении, турбоагрегаты и их вспомогательное оборудование - в машинном зале электростанции. На КЭС устанавливают преимущественно по одному котлу на турбину. Котёл с турбоагрегатом и их вспомогательным оборудование образуют отдельную часть - моноблок электростанции. Для турбин мощностью 150-1200 Мвт требуются котлы производительностью соответственно 500-3600 м/ч пара. Ранее на ГРЭС применяли по два котла на турбину, т. е. дубль-блоки (см. Блочная тепловая электростанция ). На КЭС без промежуточного перегрева пара с турбоагрегатами мощностью 100 Мвт и меньше в СССР применяли неблочную централизованную схему, при которой пар 113 котлов отводится в общую паровую магистраль, а из неё распределяется между турбинами. Размеры главного корпуса определяются размещаемым в нём оборудованием и составляют на один блок, в зависимости от его мощности, по длине от 30 до 100 м, по ширине от 70 до 100 м. Высота машинного зала около 30 м, котельной - 50 м и более. Экономичность компоновки главного корпуса оценивают приближённо удельной кубатурой, равной на пылеугольной КЭС около 0,7-0,8 м 3 /квт, а на газомазутной - около 0,6-0,7 м 3 /квт. Часть вспомогательного оборудования котельной (дымососы, дутьевые вентиляторы, золоуловители, пылевые циклоны и сепараторы пыли системы пылеприготовления) устанавливают вне здания, на открытом воздухе.

В условиях тёплого климата (например, на Кавказе, в Средней Азии, на Ю. США и др.), при отсутствии значительных атмосферных осадков, пылевых бурь и т. п., на КЭС, особенно газомазутных, применяют открытую компоновку оборудования. При этом над котлами устраивают навесы, турбоагрегаты защищают лёгкими укрытиями; вспомогательное оборудование турбоустановки размещают в закрытом конденсационном помещении. Удельная кубатура главного корпуса КЭС с открытой компоновкой снижается до 0,2-0,3 м 3 /квт, что удешевляет сооружение КЭС. В помещениях электростанции устанавливают мостовые краны и др. грузоподъёмные механизмы для монтажа и ремонта энергетического оборудования.

КЭС сооружают непосредственно у источников водоснабжения (река, озеро, море); часто рядом с КЭС создают пруд-водохранилище. На территории КЭС, кроме главного корпуса, размещают сооружения и устройства технического водоснабжения и химводоочистки, топливного хозяйства, электрические трансформаторы, распределительные устройства, лаборатории и мастерские, материальные склады, служебные помещения для персонала, обслуживающего КЭС. Топливо на территорию КЭС подаётся обычно ж. д. составами. Золу и шлаки из топочной камеры и золоуловителей удаляют гидравлическим способом. На территории КЭС прокладывают ж. д. пути и автомобильные дороги, сооружают выводы линий электропередачи , инженерные наземные и подземные коммуникации. Площадь территории, занимаемой сооружениями КЭС, составляет, в зависимости от мощности электростанции, вида топлива и др. условий, 25-70 га.

Крупные пылеугольные КЭС в СССР обслуживаются персоналом из расчёта 1 чел. на каждые 3 Мвт мощности (примерно 1000 чел. на КЭС мощностью 3000 Мвт ); кроме того, необходим ремонтный персонал.

Мощность отдаваемая КЭС ограничивается водными и топливными ресурсами, а также требованиями охраны природы: обеспечения нормальной чистоты воздушного и водного бассейнов. Выброс с продуктами сгорания топлива твёрдых частиц в воздух в районе действия КЭС ограничивают установкой совершенных золоуловителей (электрофильтров с кпд около 99%). Оставшиеся примеси, окислы серы и азота рассеивают сооружением высоких дымовых труб для вывода вредных примесей в более высокие слои атмосферы. Дымовые трубы высотой до 300 м и более сооружают из железобетона или с 3-4 металлическими стволами внутри железобетонной оболочки или общего металлического каркаса.

Управление многочисленным разнообразным оборудованием КЭС возможно только на основе комплексной автоматизации производственных процессов. Современные конденсационные турбины полностью автоматизированы. В котлоагрегате автоматизируется управление процессами горения топлива, питания котлоагрегата водой, поддержания температуры перегрева пара и т. д. Осуществляется комплексная автоматизация др. процессов КЭС, включая поддержание заданных режимов эксплуатации, пуск и остановку блоков, защиту оборудования при ненормальных и аварийных режимах. С этой целью в системе управления на крупных КЭС в СССР и за рубежом применяют цифровые, реже аналоговые, управляющие электронные вычислительные машины.

Крупнейшие конденсационные электростанции мира

Название электростанции

Год пуска

Электрическая мощность Гвт

полная (проектная)

Приднепровская (СССР)

Змиёвская (СССР)

Бурштынская (СССР)

Конаковская (СССР)

Криворожская № 2 (СССР)

Новочеркасская (СССР)

Заинская (СССР)

Кармановская (СССР)

Костромская (СССР)

Запорожская (СССР)

Сырдарьинская (СССР)

Парадайс (США)

Камберленд (США)

Феррибридж С (Великобритания)

Дрекс (Великобритания)

Гавр (Франция)

Поршвиль В (Франция)

Фриммередорф-П (ФРГ)

Специя (Италия)

Лит.: Гельтман А. Э., Будняцкий Д. М., Апатовский Л. Е., Блочные конденсационные электростанции большой мощности, М.-Л., 1964; Рыжкин В. Я., Тепловые электрические станции, М.-Л., 1967; Шредер К., Тепловые электростанции большой мощности, пер. с нем., т. 1-3, М.-Л., 1960-64: Скротцки Б.-Г., Вопат В.-А., Техника и экономика тепловых электростанций, пер. с англ., М.-Л., 1963.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Конденсационная электростанция (КЭС), тепловая паротурбинная электростанция, назначение которой - производство электрической энергии с использованием конденсационных турбин. На КЭС применяется органическое топливо: твердое топливо, преимущественно уголь разных сортов в пылевидном состоянии, газ, мазут и т. п. Тепло, выделяемое при сжигании топлива, передаётся в котельном агрегате (парогенераторе) рабочему телу, обычно - водяному пару.

КЭС, работающую на ядерном горючем, называют атомной электростанцией (АЭС) или конденсационной АЭС (АКЭС). Тепловая энергия водяного пара преобразуется в конденсационной турбине в механическую энергию, а последняя в электрическом генераторе - в электрическую энергию. Отработавший в турбине пар конденсируется, конденсат пара перекачивается сначала конденсатным, а затем питательным насосами в паровой котёл (котлоагрегат, парогенератор). Таким образом создаётся замкнутый пароводяной тракт: паровой котёл с пароперегревателем - паропроводы от котла к турбине - турбина - конденсатор - конденсатный и питательные насосы - трубопроводы питательной воды - паровой котёл. Схема пароводяного тракта является основной технологической схемой паротурбинной электростанции и носит название тепловой схемы КЭС.

Для конденсации отработавшего пара требуется большое количество охлаждающей воды с температурой 10-20°С (около 10 м3/сек для турбин мощностью 300 Мвт). КЭС являются основным источником электроэнергии в СССР и большинстве промышленных стран мира; на долю КЭС в СССР приходится 2/3 общей мощности всех тепловых электростанций страны. КЭС, работающие в энергосистемах Советского Союза, называют также ГРЭС. Первые КЭС, оборудованные паровыми машинами, появились в 80-х гг. 19 в. В начале 20 в. КЭС стали оснащать паровыми турбинами. В 1913 в России мощность всех КЭС составляла 1,1 Гвт. Строительство крупных КЭС (ГРЭС) началось в соответствии с планом ГОЭЛРО; Каширская ГРЭС и Шатурская электростанция им. В. И. Ленина были первенцами электрификации СССР. В 1972 мощность КЭС в СССР составила уже 95 Гвт. Прирост электрической мощности на КЭС СССР составил около 8 Гвт за год. Возросла также единичная мощность КЭС и установленных на них агрегатов. Мощность наиболее крупных КЭС к 1973 достигла 2,4-2,5 Гвт. Проектируются и сооружаются КЭС мощностью 4-5 Гвт (см. табл.). В 1967-68 на Назаровской и Славянской ГРЭС были установлены первые паровые турбины мощностью 500 и 800 Мвт. Создаются (1973) одновальные турбоагрегаты мощностью 1200 Мвт. За рубежом наиболее крупные турбоагрегаты (двухвальные) мощностью 1300 Мвт устанавливаются (1972-73) на КЭС Камберленд (США). Основные технико-экономические требования к КЭС - высокая надёжность, манёвренность и экономичность. Требование высокой надёжности и манёвренности обусловливается тем, что производимая КЭС электроэнергия потребляется сразу же, т. е. КЭС должна производить столько электроэнергии, сколько необходимо её потребителям в данный момент. Экономичность сооружения и эксплуатации КЭС определяется удельными капиталовложениями (110-150 руб. на установленный квт), себестоимостью электроэнергии (0,2-0,7 коп./квт ×ч), обобщающим показателем - удельными расчётными затратами (0,5-1,0 коп./квт ×ч). Эти показатели зависят от мощности КЭС и её агрегатов, вида и стоимости топлива, режимов работы и кпд процесса преобразования энергии, а также местоположения электростанции. Затраты на топливо составляют обычно более половины стоимости производимой электроэнергии. Поэтому к КЭС предъявляют, в частности, требования высокой тепловой экономичности, т. е. малых удельных расходов тепла и топлива, высокого кпд.


Преобразование энергии на КЭС производится на основе термодинамического цикла Ренкина, в котором подвод тепла воде и водяному пару в котле и отвод тепла охлаждающей водой в конденсаторе турбины происходят при постоянном давлении, а работа пара в турбине и повышение давления воды в насосах - при постоянной энтропии.

Общий кпд современной КЭС - 35-42% и определяется кпд усовершенствованного термодинамического цикла Ренкина (0,5-0,55), внутренний относительный кпд турбины (0,8-0,9), механический кпд турбины (0,98-0,99), кпд электрического генератора (0,98-0,99), кпд трубопроводов пара и воды (0,97-0,99), кпд котлоагрегата (0,9-0,94). Увеличение кпд КЭС достигается главным образом повышением начальных параметров (начальных давления и температуры) водяного пара, совершенствованием термодинамического цикла, а именно - применением промежуточного перегрева пара и регенеративного подогрева конденсата и питательной воды паром из отборов турбины. На КЭС по технико-экономическим основаниям применяют начальное давление пара докритическое 13-14, 16-17 или сверхкритическое 24-25 Мн/м2, начальную температуру свежего пара, а также после промежуточного перегрева 540-570 °С. В СССР и за рубежом созданы опытно-промышленные установки с начальными параметрами пара 30-35 Мн/м2 при 600-650 °С. Промежуточный перегрев пара применяют обычно одноступенчатый, на некоторых зарубежных КЭС сверхкритического давления - двухступенчатый. Число регенеративных отборов пара 7-9, конечная температура подогрева питательной воды 260-300 °С. Конечное давление отработавшего пара в конденсаторе турбины 0,003-0,005 Мн/м2.

Часть вырабатываемой электроэнергии потребляется вспомогательным оборудованием КЭС (насосами, вентиляторами, угольными мельницами и т. д.). Расход электроэнергии на собственные нужды пылеугольной КЭС составляет до 7%, газомазутной -до 5%. Значит, часть - около половины энергии на собственные нужды расходуется на привод питательных насосов. На крупных КЭС применяют паротурбинный привод; при этом расход электроэнергии на собственные нужды снижается. Различают кпд КЭС брутто (без учёта расхода на собственные нужды) и кпд КЭС нетто (с учётом расходов на собственные нужды). Энергетическими показателями, равноценными кпд, служат также удельные (на единицу

электроэнергии) расходы тепла и условного топлива с теплотой сгорания 29,3 Мдж/кг (7000 ккал/кг), равные для КЭС 8,8 - 10,2Мдж/квт ×ч (2100 - 2450

ккал/квт×ч) и 300-350 г/квт×ч. Повышение кпд, экономия топлива и уменьшение топливной составляющей эксплуатационных расходов обычно сопровождаются удорожанием оборудования и увеличением капиталовложений. Выбор оборудования КЭС, параметров пара и воды, температуры уходящих газов котлоагрегатов и т. д. производится на основе технико-экономических расчётов, учитывающих одновременно капиталовложения и эксплуатационные расходы (расчётные затраты).

Основное оборудование КЭС (котельные и турбинные агрегаты) размещают в главном корпусе, котлы и пылеприготовительную установку (на КЭС, сжигающих, например, уголь в виде пыли) - в котельном отделении, турбоагрегаты и их вспомогательное оборудование - в машинном зале электростанции. На КЭС устанавливают преимущественно по одному котлу на турбину. Котёл с турбоагрегатом и их вспомогательным оборудование образуют отдельную часть - моноблок электростанции.

Для турбин мощностью 150-1200 Мвт требуются котлы производительностью соответственно 500-3600 м/ч пара. Ранее на ГРЭС применяли по два котла на турбину, т. е. дубль-блоки (см. Блочная тепловая электростанция). На КЭС без промежуточного перегрева пара с турбоагрегатами мощностью 100 Мвт и меньше в СССР применяли неблочную централизованную схему, при которой пар 113 котлов отводится в общую паровую магистраль, а из неё распределяется между турбинами.

Размеры главного корпуса определяются размещаемым в нём оборудованием и составляют на один блок, в зависимости от его мощности, по длине от 30 до 100 м, по ширине от 70 до 100 м. Высота машинного зала около 30 м, котельной - 50 м и более. Экономичность компоновки главного корпуса оценивают приближённо удельной кубатурой, равной на пылеугольной КЭС около 0,7-0,8 м3/квт, а на газомазутной - около 0,6-0,7 м3/квт. Часть вспомогательного оборудования котельной (дымососы, дутьевые вентиляторы, золоуловители, пылевые циклоны и сепараторы пыли системы

пылеприготовления) устанавливают вне здания, на открытом воздухе.

В условиях тёплого климата (например, на Кавказе, в Средней Азии, на Ю. США и др.), при отсутствии значительных атмосферных осадков, пылевых бурь и т. п., на КЭС, особенно газомазутных, применяют открытую компоновку оборудования. При этом над котлами устраивают навесы, турбоагрегаты защищают лёгкими укрытиями; вспомогательное оборудование турбоустановки размещают в закрытом конденсационном помещении. Удельная кубатура главного корпуса КЭС с открытой компоновкой снижается до 0,2-0,3 м3/квт, что удешевляет сооружение КЭС. В помещениях электростанции устанавливают мостовые краны и др. грузоподъёмные механизмы для монтажа и ремонта энергетического оборудования.

КЭС сооружают непосредственно у источников водоснабжения (река, озеро, море); часто рядом с КЭС создают пруд-водохранилище. На территории КЭС, кроме главного корпуса, размещают сооружения и устройства технического водоснабжения и химводоочистки, топливного хозяйства, электрические трансформаторы, распределительные устройства, лаборатории и мастерские, материальные склады, служебные помещения для персонала, обслуживающего КЭС. Топливо на территорию КЭС подаётся обычно ж. д. составами. Золу и шлаки из топочной камеры и золоуловителей удаляют гидравлическим способом. На территории КЭС прокладывают ж. д. пути и автомобильные дороги, сооружают выводы линий электропередачи,

инженерные наземные и подземные коммуникации. Площадь территории, занимаемой сооружениями КЭС, составляет, в зависимости от мощности электростанции, вида топлива и др. условий, 25-70 га.

Крупные пылеугольные КЭС в СССР обслуживаются персоналом из расчёта 1 чел. на каждые 3 Мвт мощности (примерно 1000 чел. на КЭС мощностью 3000 Мвт); кроме того, необходим ремонтный персонал. Мощность отдаваемая КЭС ограничивается водными и топливными ресурсами, а также требованиями охраны природы: обеспечения нормальной чистоты воздушного и водного бассейнов. Выброс с продуктами сгорания топлива твёрдых частиц в воздух в районе действия КЭС ограничивают установкой совершенных золоуловителей (электрофильтров с кпд около 99%). Оставшиеся примеси, окислы серы и азота рассеивают сооружением высоких дымовых труб для вывода вредных примесей в более высокие слои атмосферы. Дымовые трубы высотой до 300 м и более сооружают из железобетона или с 3-4 металлическими стволами внутри железобетонной оболочки или общего металлического каркаса. Управление многочисленным разнообразным оборудованием КЭС возможно только на основе комплексной автоматизации производственных процессов. Современные конденсационные турбины полностью автоматизированы. В котлоагрегате автоматизируется управление процессами горения топлива, питания котлоагрегата водой, поддержания температуры перегрева пара и т. д. Осуществляется комплексная автоматизация др. процессов КЭС, включая поддержание заданных режимов эксплуатации, пуск и остановку блоков, защиту оборудования при ненормальных и аварийных режимах. С этой целью в системе управления на крупных КЭС в СССР и за рубежом применяют цифровые, реже аналоговые, управляющие электронные вычислительные машины.

24 октября 2012

Электрическая энергия давно вошла в нашу жизнь. Еще греческий философ Фалес в 7 веке до нашей эры обнаружил, что янтарь, потертый о шерсть начинает притягивать предметы. Но долгое время на этот факт никто не обращал внимание. Лишь в 1600 году впервые появился термин «Электричество», а в 1650 году Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. Это была первая простейшая электростатическая машина.

Прошло много лет с тех пор, но даже сегодня, в мире, заполненном терабайтами информации, когда можно самому узнать все, что тебя интересует, для многих остается загадкой как производится электричество, как его доставляют к нам в дом, офис, на предприятие…

В несколько частей рассмотрим эти процессы.

Часть I. Генерация электрической энергии.

Откуда же берется электрическая энергия? Появляется эта энергия из других видов энергии – тепловой, механической, ядерной, химической и многих других. В промышленных масштабах электрическую энергию получают на электростанциях. Рассмотрим только самые распространенные виды электростанций.

1) Тепловые электростанции. Сегодня из можно объединить одним термином – ГРЭС (Государственная Районная Электростанция). Конечно, сегодня этот термин потерял первоначальный смысл, но он не ушел в вечность, а остался с нами.

Тепловые электростанции делятся на несколько подтипов:

А) Конденсационная электростанция (КЭС) - тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы.

Принцип работы: В котел при помощи насосов подается воздух и топливо (газообразное, жидкое или твердое). Получается топливо-воздушная смесь, которая горит в топке котла, выделяя огромное количество теплоты. При этом вода проходит по трубной системе, которая располагается внутри котла. Выделяющаяся теплота передается этой воде, при этом ее температура повышается и доводится до кипения. Пар, который был получен в котле снова идет в котел для перегревания его выше температуры кипения воды (при данном давлении), затем по паропроводам он поступает на паровую турбину, в которой пар совершает работу. При этом он расширяется, уменьшается его температура и давление. Таким образом, потенциальная энергия пара передается турбине, а значит, превращается в кинетическую. Турбина же в свою очередь приводит в движение ротор трехфазного генератора переменного тока, который находится на одном валу с турбиной и производит энергию.

Рассмотрим некоторые элементы КЭС поближе.

Паровая турбина.

Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение. Между рядами лопаток, как видите, есть промежутки. Они есть потому, что этот ротор вынут из корпуса. В корпус тоже встроены ряды лопаток, но они неподвижны и служат для создания нужного угла падения пара на движущиеся лопатки.

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум.

Турбина и генератор, которые находятся на одном валу называются турбогенератором. Трехфазный генератор переменного тока (синхронная машина).

Он состоит из:


Который повышает напряжение до стандартного значения (35-110-220-330-500-750 кВ). При этом ток значительно уменьшается (например, при увеличении напряжения в 2 раза, ток уменьшается в 4 раза), что позволяет передавать мощность на большие расстояния. Следует отметить, что когда мы говорим о классе напряжения, то мы имеем в виду линейное (междуфазное) напряжение.

Активную мощность, которую вырабатывает генератор, регулируют изменением количеством энергоносителя, при этом изменяется ток в обмотке ротора. Для увеличения выдаваемой активной мощности нужно увеличить подачу пара на турбину, при этом ток в обмотке ротора возрастет. Не следует забывать, что генератор синхронный, а это значит, что его частота всегда равна частоте тока в энергосистеме, и изменение параметров энергоносителя не повлияет на частоту его вращения.

Кроме того, генератор вырабатывает и реактивную мощность. Ее можно использовать для регулирования выдаваемого напряжения в небольших пределах (т.е. это не основное средство регулирования напряжения в энергосистеме). Работает это таким образом. При перевозбуждении обмотки ротора, т.е. при повышении напряжения на роторе сверх номинала, «излишек» реактивной мощности выдается в энергосистему, а когда обмотку ротора недовозбуждают, то реактивная мощность потребляется генератором.

Таким образом, в переменном токе мы говорим о полной мощности (измеряется в вольт-амперах – ВА), которая равна корню квадратному от суммы активной (измеряется в ваттах – Вт) и реактивной (измеряется в вольт-амперах реактивных – ВАР) мощностях.

Вода в водохранилище служит для отведения тепла от конденсатора. Однако, часто для этих целей используют брызгальные бассейны


или градирни. Градирни бывают башенными Рис.8

или вентиляторными Рис.9

Градирни устроены почти так же как и , с тем лишь различием, что вода стекает по радиаторам, передает им тепло, а уже они охлаждаются нагнетаемым воздухом. При этом часть воды испаряется и уносится в атмосферу.
КПД такой электростанции не превышает 30%.

Б) Газотурбинная электростанция.

На газотурбинной электростанции турбогенератор приводится в движение не паром, а непосредственно газами, получаемыми при сгорании топлива. При этом можно использовать только природный газ, иначе турбина быстро выйдет из стоя из-за ее загрязнения продуктами горения. КПД на максимальной нагрузке 25-33%

Гораздо больший КПД (до 60%) можно получить, совмещая паровой и газовый циклы. Такие установки называются парогазовыми. В них вместо обычного котла установлен котел-утилизатор, не имеющий собственных горелок. Теплоту он получает от выхлопа газовой турбины. В настоящее время ПГУ активнейшим образом внедряются в нашу жизнь, но пока в России их немного.

В) Теплоэлектроцентрали (очень давно стали неотъемлемой частью крупных городов). Рис.11

ТЭЦ конструктивно устроена как конденсационная электростанция (КЭС). Особенность электростанции такого типа состоит в том, что она может вырабатывать одновременно как тепловую, так и электрическую энергию. В зависимости от вида паровой турбины, существуют различные способы отборы пара, которые позволяют забирать из нее пар с разными параметрами. При этом часть пара или полностью весь пар (зависит от типа турбины) поступает в сетевой подогреватель, отдает ему теплоту и конденсируется там. Теплофикационные турбины позволяют регулировать количество пара для тепловых или промышленных нужд что позволяет ТЭЦ работать в нескольких режимах по нагрузке:

тепловому - выработка электрической энергии полностью зависит от выработки пара для промышленных или теплофикационных нужд.

электрическому - электрическая нагрузка независима от тепловой. Кроме того, ТЭЦ могут работать и в полностью конденсационном режиме. Это может потребоваться, например, при резком дефиците активной мощности летом. Такой режим является невыгодным для ТЭЦ, т.к. значительно снижается КПД.

Одновременное производство электрической энергии и тепла (когенерация) – выгодный процесс, при котором КПД станции существенно повышается. Так, например, расчетный КПД КЭС составляет максимум 30%, а у ТЭЦ – около 80%. Плюс ко всему, когенерация позволяет уменьшить холостые тепловые выбросы, что положительно сказывается на экологии местности, в которой расположена ТЭЦ (по сравнению с тем, если бы тут была КЭС аналогичной мощности).

Рассмотрим подробнее паровую турбину.

К теплофикационным паровым турбинам относятся турбины с:

Противодавлением;

Регулируемым отбором пара;

Отбором и противодавлением.

Турбины с противодавлением работают с выхлопом пара не в конденсатор, как у КЭС, а в сетевой подогреватель, то есть весь пар, пошедший через турбину, идет на теплофикационные нужды. Конструкция таких турбин обладает существенным недостатком: график электрической нагрузки полностью зависит от графика тепловой нагрузки, то есть такие аппараты не могут принимать участия в оперативном регулировании частоты тока в энергосистеме.

В турбинах, имеющих регулируемый отбор пара, происходит его отбор в нужном количестве в промежуточных ступенях, при этом выбирают такие ступени для отбора пара, какие подходят в данном случае. Такой тип турбины обладает независимостью от тепловой нагрузки и регулирование выдаваемой активной мощности можно регулировать в больших пределах, чем у ТЭЦ с противодавлением.

Турбины с отбором и противодавлением совмещают в себе функции первых двух видов турбин.

Теплофикационные турбины ТЭЦ не всегда не способны за малый промежуток времени изменить тепловую нагрузку. Для покрытия пиков нагрузки,а иногда и для увеличения электрической мощности путем перевода турбин в конденсационный режим, на ТЭЦ устанавливают пиковые водогрейные котлы.

2) Атомные электростанции.

В России на настоящий момент существует 3 вида реакторных установок. Общий принцип их работы примерно похож на работу КЭС (в былые времена АЭС называли ГРЭС). Принципиальное различие состоит лишь в том, что тепловую энергию получают не в котлах на органическом топливе, а в ядерных реакторах.

Рассмотрим две самых распространенных типов реакторов в России.

1) Реактор РБМК .


Отличительная особенность этого реактора состоит в том, что пар для вращения турбины получают непосредственно в активной зоне реактора.

Активная зона РБМК. Рис.13

состоит из вертикальных графитовых колонн, в которых находятся продольные отверстия, с вставленными туда трубами из циркониевого сплава и нержавеющей стали. Графит выполняет роль замедлителя нейтронов. Все каналы делятся на топливные и каналы СУЗ (система управления и защиты). Они имеют разные контуры охлаждения. В топливные каналы вставляют кассету (ТВС – тепловыделяющую сборку) со стержнями (ТВЭЛ – тепловыделяющий элемент) внутри которых находятся урановые таблетки в герметичной оболочке. Понятно, что именно от них получают тепловую энергию, которая передается непрерывно циркулирующему снизу вверх теплоносителю под большим давлением – обычной, но очень хорошо очищенной от примесей воде.

Вода, проходя по топливным каналам, частично испаряется, пароводяная смесь поступает от всех отдельных топливных каналов в 2 барабан-сепаратора, где происходит отделение (сепарация) пара от воды. Вода снова уходит в реактор с помощью циркуляционных насосов (всего из 4 на петлю), а пар по паропроводам идет на 2 турбины. Затем пар конденсируется в конденсаторе, превращается в воду, которая снова идет в реактор.

Тепловой мощностью реактора управляют только с помощью стержней-поглотителей нейтронов из бора, которые перемещаются в каналах СУЗ. Вода, охлаждающая эти каналы идет сверху вниз.

Как вы могли заметить, я еще ни разу не сказал про корпус реактора. Дело в том, что фактически у РБМК нет корпуса. Активная зона про которую я вам сейчас рассказывал помещена в бетонную шахту, сверху она закрыта крышкой весом в 2000 тонн.

На приведенном рисунке видна верхняя биологическая защита реактора. Но не стоит ожидать, что приподняв один из блоков, можно будет увидеть желто-зеленое жерло активной зоны, нет. Сама крышка располагается значительно ниже, а над ней, в пространстве до верхней биологической защиты остается промежуток для коммуникаций каналов и полностью извлеченных стержней поглотителей.

Между графитовыми колоннами оставляют пространство для теплового расширения графита. В этом пространстве циркулирует смесь газов азота и гелия. По ее составу судят о герметичности топливных каналов. Активная зона РБМК рассчитана на разрыв не более 5 каналов, если разгерметизируется больше – произойдет отрыв крышки реактора и раскрытие остальных каналов. Такое развитие событий вызовет повторение Чернобыльской трагедии (тут я имею в виду не саму техногенную катастрофу, а ее последствия).

Рассмотрим плюсы РБМК:

—Благодаря поканальному регулированию тепловой мощности есть возможность менять топливные сборки, не останавливая реактор. Каждый день, обычно, меняют несколько сборок.

—Низкое давление в КМПЦ (контур многократной принудительной циркуляции), что способствует более мягкому протеканию аварий, связанных с его разгерметизацией.

—Отсутствие сложного в изготовлении корпуса реактора.

Рассмотрим минусы РБМК:

—В ходе эксплуатации были обнаружены многочисленные просчеты в геометрии активной зоны, устранить которые на действующих энергоблоках 1-го и 2-го поколений (Ленинград, Курск, Чернобыль, Смоленск) полностью не возможно. Энергоблоки РБМК 3-его поколения (он один – на 3 энергоблоке Смоленской АЭС) лишен этих недостатков.

—Реактор одноконтурный. То есть турбины вращает пар, полученный непосредственно в реакторе. А это значит, что он содержит радиоактивные компоненты. При разгерметизации турбины (а такое было на Чернобыльской АЭС в 1993 году) ее ремонт будет сильно усложнен, а, может быть, и невозможен.

—Срок службы реактора определяется сроком службы графита (30-40 лет). Затем наступает его деградация, проявляющаяся в его разбухании. Этот процесс уже вызывает серьезные опасения на старейшем энергоблоке РБМК Ленинград-1, построенном в 1973 году (ему уже 39 лет). Наиболее вероятный выход из ситуации – заглушение n-нного количества каналов для уменьшения теплового расширения графита.

—Графитовый замедлитель является горючим материалом.

—Ввиду огромного количества запорной арматуры, реактор сложен в управлении.

— На 1 и 2 поколениях существует неустойчивость при работе на малых мощностях.

В целом можно сказать, что РБМК – хороший реактор для своего времени. В настоящее время принято решение не строить энергоблоки с этим типом реакторов.

2) Реактор ВВЭР.

На смену РБМК в настоящее время приходит ВВЭР. Он обладает значительными плюсами по сравнению с РБМК.

Активная зона полностью находится в очень прочном корпусе, который изготавливают на заводе и привозят железнодорожным, а затем и автомобильным транспортом на строящийся энергоблок в полностью готовом виде. Замедлителем является чистая вода под давлением. Реактор состоит из 2-х контуров: вода первого контура под большим давлением охлаждает топливные сборки, передавая тепло 2-му контуру с помощью парогенератора (выполняет функцию теплообменника между 2-ми изолированными контурами). В нем вода второго контура кипит, превращается в пар и идет на турбину. В первом контуре вода не кипит, так как она находится под очень большим давлением. Отработанный пар конденсируется в конденсаторе и снова идет в парогенератор. Двухконтурная схема обладает значительными плюсами по сравнению с одноконтурной:

Пар, идущий на турбину не радиоктивен.

Мощностью реактора можно управлять не только стержнями-поглотителями, но и раствором борной кислоты, что делает реактор более устойчивым.

Элементы первого контура располагаются очень близко друг от друга, поэтому их можно поместить в общую защитную оболочку. При разрывах в первом контуре радиоактивные элементы попадут в гермооболочку и не выйдут в окружающую среду. Кроме того гермооболочка защищает реактор от внешнего воздействия (например от падения небольшого самолета или взрыва за периметром станции).

Реактор не сложен в управлении.

Имеются так же и минусы:

—В отличие от РБМК, топливо нельзя менять при работающем реакторе, т.к. оно находится в общем корпусе, а не в отдельных каналах, как в РБМК. Время перезагрузки топлива обычно совпадает со временем текущего ремонта, что уменьшает воздействие этого фактора на КИУМ (коэффициент используемой установленной мощности).

—Первый контур находится под большим давлением, что потенциально может вызвать больший масштаб аварии при разгерметизации, чем РБМК.

—Корпус реактора очень сложно перевезти с завода-изготовителя на стройплощадку АЭС.

Что же, работу тепловых электростанций мы рассмотрели, теперь рассмотрим работу

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. ГЭС обладают очень высокой маневренностью вырабатываемой мощности, а также малой стоимостью вырабатываемой электроэнергии. Эта особенность ГЭС привела с созданию другого типа электростанции – ГАЭС. Такие станции способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (обычно ночью), гидроагрегаты ГАЭС работают как насосы, потребляя электрическую энергию из энергосистемы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность (в пики нагрузки), вода из них поступает в напорный трубопровод и приводит в действие турбины. ГАЭС выполняют исключительно важную функцию в энергосистеме (регулирование частоты), но они не получают широкого распространения у нас в стране, т.к. в итоге они потребляют больше мощности, чем выдают. То есть станция такого типа убыточна для владельца. Например, на Загорской ГАЭС мощность гидрогенераторов в генераторном режиме 1200 МВт, а в насосном – 1320 МВт. Однако такой тип станции наилучшем образом подходит для быстрого увеличения или уменьшения вырабатываемой мощности, поэтому их выгодно сооружать около, например, АЭС, так как последние работают в базовом режиме.

Мы с вами рассмотрели как именно производится электрическая энергия. Пора задать себе серьезный вопрос: «А какой тип станций наилучшем образом отвечает всем современным требованиям по надежности, экологичности, а кроме этого, еще и будет отличаться малой стоимостью энергии?» Каждый ответит на этот вопрос по-разному. Приведу свой список «лучших из лучших».

1) ТЭЦ на природном газе. КПД таких станций очень высок, высока и стоимость топлива, но природный газ – один из самых «чистых» видов топлива, а это очень важно для экологии города, в черте которых обычно и располагаются ТЭЦ.

2) ГЭС и ГАЭС. Преимущества над тепловыми станциями очевидно, так как этот тип станции не загрязняет атмосферу и производит самую «дешевую» энергию, которая плюс ко всему является возобновляемым ресурсом.

3) ПГУ на природном газе. Самый высокий КПД среди тепловых станций, а так же малое количество потребляемого топлива, позволит частично решить проблему теплового загрязнения биосферы и ограниченных запасов ископаемого топлива.

4) АЭС. В нормальном режиме работы АЭС выбрасывает в окружающую среду в 3-5 раз меньше радиоактивных веществ, чем тепловая станция той же мощности, поэтому частичное замещения тепловых электростанций атомными вполне оправдано.

5) ГРЭС. В настоящее время на таких станциях в качестве топлива используют природный газ. Это является абсолютно бессмысленным, так как с тем же успехов в топках ГРЭС можно утилизировать попутный нефтяной газ (ПНГ) или сжигать уголь, запасы которого огромны, по сравнению с запасами природного газа.

На этом я завершаю первую часть статьи.

Материал подготовил:
студент группы ЭС-11б ЮЗГУ Агибалов Сергей.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!