Электричество из живых растений. Оборудовать можно будет каждую теплицу

Жизнь растений связана с влагой. Поэтому электрические процессы в них наиболее полно проявляются при нормальном режиме увлажнения и затухают при увядании. Это связано с обменом зарядами между жидкостью и стенками капиллярных сосудов при протекании питательных растворов по капиллярам растений, а также с процессами обмена ионами между клетками и окружающей средой. Важнейшие для жизнедеятельности электрические поля возбуждаются в клетках. В состоянии равновесия мембраны растительных клеток непроницаемы для ионов кальция и проницаемы для ионов калия.

Выход ионов через клеточную мембрану сообщает клетке отрицательный заряд; По достижении равновесия в распределении ионов калия мембранный потенциал приобретает предельное значение потенциала покоя. При раздражении растения изменяется проницаемость клеточных мембран для ионов кальция. Ионы кальция поступают в клетку и уменьшают ее отрицательный заряд. За счет нарушения равновесия в распределении зарядов возникает пик мембранного потенциала, который в виде электрического импульса распространяется вдоль поверхности клеток. Последующий выход из клеток ионов калия возвращает мембранный потенциал к равновесию. Скорость распространения импульсов раздражения по клеткам растений составляет несколько сантиметров в секунду (по нервам животных раздражение распространяется в сотни раз быстрее). Малая скорость распространения раздражений по организму растений связана с их общей неподвижностью.

Особенно активно электрические процессы протекают в клетках корней, поскольку именно через эти клетки поступают питательные соки к растущим побегам. Конечные разветвления корней и верхушек побегов растений всегда заряжены отрицательно относительно стебля. У некоторых растений вблизи корчей в течение нескольких часов происходят колебания электрического потенциала с периодом около 5 минут и амплитудой в несколько милливольт. Наиболее значительные колебания отмечаются у самого кончика корня. Об интенсивности электрических процессов в корневых клетках можно судить по величине протекающего через них тока. Исследованиями установлено, что через каждый 1мм 2 поверхности корня протекает ток около 0,01 микроампера.

Поврежденное место в тканях растений всегда заряжается отрицательно относительно неповрежденных участков, а отмирающие участки растений приобретают отрицательный заряд по отношению к участкам, растущим в нормальных условиях.

Одностороннее освещение листа возбуждает электрическую разность потенциалов между освещенными и неосвещенными его участками и черешком, стеблем или корнем. Эта разность потенциалов выражает реакцию растения на изменения в его организме, связанные с началом или прекращением процесса фотосинтеза.

В практике распыления ядохимикатов в сельском хозяйстве выяснено, что на свеклу и яблоню в большей мере осаждаются химикаты с положительным зарядом, на сирень – с отрицательным. Несомая ветром цветочная пыльца имеет отрицательный заряд, приближающийся по величине к заряду пылинок при пылевых бурях, Вблизи теряющих пыльцу растений резко изменяется соотношение между положительными и отрицательными легкими ионами, что благоприятно сказывается на дальнейшем развитии растений.

Заряженные семена культурных растений имеют сравнительно высокую электропроводность и поэтому быстро теряют заряд. Семена сорняков ближе по своим свойствам к диэлектрикам и могут сохранять заряд более длительное время. Это используется для отделения на конвейере семян культурных растений от сорняков.

Прорастание семян в сильном электрическом поле (например, вблизи коронирующего электрода) приводит к изменениям высоты и толщины стебля и густоты кроны развивающихся растений. Происходит это в основном благодаря перераспределению в организме растения под влиянием внешнего электрического поля объемного заряда. Если в результате исследований удастся найти сумму наиболее благоприятных для развития растений характеристик действующего извне электрического поля, выращивание растений в парниках в еще большей мере будет подчинено воле человека.

Значительные разности потенциалов в организме растений возбуждаться не могут, поскольку растения не имеют специализированного электрического органа. Поэтому среди растений не существует «древа смерти», которое могло бы убивать живые существа своей электрической мощностью.

Текст издания:

Арабаджи Всеволод Исидорович. Загадки простой воды. М.: «Знание», 1973

Начнем с того, что индустрия сельского хозяйства разрушена до основания. Что дальше? Не пора ли собирать камни? Не пора ли объединить все творческие силы, чтобы дать селянам и дачникам те новинки, которые позволят резко поднять урожайность, сократить ручной труд, найти новые пути в генетике... Я бы предложил читателям журнала быть авторами рубрики "Для села и дачников". Начну с давней работы "Электрическое поле и урожайность."

В 1954 г., когда я был слушателем Военной академии связи в Ленинграде, страстно увлекся процессом фотосинтеза и провел интересное испытание с выращиванием лука на подоконнике. Окна комнаты, в которой я жил, выходили на север, и потому солнца луковицы получать не могли. Я высадил в два удлиненных ящика по пять луковиц. Землю брал в одном и том же месте для обоих ящиков. Удобрений у меня не было, т.е. были созданы как бы одинаковые условия для выращивания. Над одним ящиком сверху, на расстоянии полуметра (рис.1) расположил металлическую пластину, к которой прикрепил провод от высоковольтного выпрямителя +10 000 В, а в землю этого ящика воткнул гвоздь, к которому подсоединил "-" провод от выпрямителя.

Сделал это для того, что по моей теории катализа создание в зоне растений высокого потенциала приведет к увеличению дипольного момента молекул, участвующих в реакции фотосинтеза, И потянулись дни испытаний. Уже через недели две я обнаружил, что в ящике с электрическим полем растения развиваются более эффективно, чем в ящике без "поля"! Спустя 15 лет этот эксперимент повторили в институте, когда потребовалось добиться выращивания растений в космическом корабле. Там, находясь в замкнутом от магнитного и электрического полей, растения развиваться не могли. Пришлось создавать искусственное электрическое поле, и теперь на космических кораблях растения выживают. А если вы живете в железобетонном доме, да еще на верхнем этаже, разве ваши растения в доме не страдают от отсутствия электрического (да и магнитного) поля? Суньте гвоздь в землю цветочного горшка, а проводок от него подсоедините к очищенной от краски или ржавчины отопительной батареи. В этом случае ваше растение приблизится к условиям жизни на открытом пространстве, что очень важно для растений да и для человека тоже!

Но на этом мои испытания не закончились. Проживая в г.Кировограде, я решил развести на подоконнике помидоры. Однако зима наступила столь быстро, что я не успел выкопать на огороде кусты помидор, чтобы пересадить их в цветочные горшки. Мне попался примерзший куст с небольшим живым отросточком. Я принес его домой, поставил в воду и... О, радость! Через 4 дня от нижней части отростка выросли белые корешки. Я пересадил его в горшок, и, когда он вырос с отростками, стал таким же методом получать новые саженцы. Всю зиму я лакомился свежими помидорами, выращенными на подоконнике. Но меня преследовал вопрос: неужели возможно в природе такое клонирование? Возможно, подтверждали мне старожилы в этом городе. Возможно, но...

Я переехал в Киев и попытался таким же образом получить саженцы помидор. У меня ничего не получилось. И я понял, что в Кировограде мне удавался этот метод потому, что там, в то время, когда я жил, в водопроводную сеть пускали воду из скважин, а не из Днепра, как в Киеве. Грунтовые воды в Кировограде имеют небольшую долю радиоактивности. Вот это и сыграло роль стимулятора роста корневой системы! Тогда я приложил к верхушке отростка помидора +1,5 В от батарейки, а "-" подвел к воде сосуда, где стоял отросток (рис.2), и через 4 дня на отростке, находящемся в воде, выросла густая "борода"! Так мне удалось клонировать отростки помидор.

Недавно мне надоело следить за поливом растений на подоконнике, я сунул в землю полоску фольгированного стеклотекстолита и большой гвоздь. К ним подсоединил провода от микроамперметра (рис.3). Сразу отклонилась стрелка, потому что земля в горшке была сырая, и сработала гальваническая пара "медь - железо". Через неделю увидел, как ток стал падать. Значит, наступала пора полива... Кроме того, растение выбросило новые листочки! Так растения реагируют на электричество.

"ЭЛЕКТРОГРЯДКА"

Устройство для стимуляции роста растений


Устройство для стимуляции роста растений "ЭЛЕКТРОГРЯДКА" представляет собой природный источник питания, преобразующий свободное электричество земли в электрический ток, образующейся в результате движения квантов в газовой среде.

В результате ионизации молекул газа осуществляется перенос низкопотенциального заряда от одного материала к другому и возникает ЭДС.

Указанное низкопотенциальное электричество практически идентично электрическим процессам происходящим в растениях и может использоваться для стимуляции их роста.

"ЭЛЕКТРОГРЯДКА" существенно повышает урожай и рост растений.
Уважаемые дачники сделайте сами на своём садовом участке устройство "ЭЛЕКТРОГРЯДКА"
и собирайте огромный урожай сельхоз-продуктов на радость себе и вашим соседям.

Устройство "ЭЛЕКТРОГРЯДКА" изобретено
в Межрегиональном Объединении Ветеранов Войны
Органов Государственной Безопасности "ЭФА-ВЫМПЕЛ"
является его интеллектуальной собственностью и охраняется законом РФ.

Автор изобретения:
Почеевский В.Н.

Узнав технологию изготовления и принцип работы "ЭЛЕКТРОГРЯДКИ",
Вы сможете сами создать это устройство по своему дизайну.


Радиус действия одного устройства зависит от длины проводов.

Вы за сезон при помощи устройства "ЭЛЕКТРОГРЯДКА"
сможете получить два урожая, так как ускоряется сокодвижение в растениях и они обильней плодоносят!

***
"ЭЛЕКТРОГРЯДКА" помогает расти растениям, на даче и в домашних условиях!
(розы из Голландии дольше не увядают)!

Принцип работы устройства "ЭЛЕКТРОГРЯДКА".

Принцип работы устройства "ЭЛЕКТРОГРЯДКА" очень прост.
Устройство "ЭЛЕКТРОГРЯДКА" создано по подобию большого дерева.
Алюминевая трубка заполненная (У-Ё…) составом - это крона дерева, где при взаимодействии с воздухом образуется отрицательный заряд (катод - 0,6 вольт).
В земле грядки протянута проволока в виде спирали, которая выполняет роль корня дерева. Земля грядки + анод.

Электрогрядка работает по принципу тепловой трубки и генератора постоянного импульсного тока, где частоту импульсов создаёт земля и воздух.
Проволока в земле + анод.
Проволока (растяжки) - катод.
При взаимодействии с влажностью воздуха (электролит) - происходят импульсные электрические разряды, которые притягивают воду с глубин земли, озонируют воздух и удобряют землю грядки.
Раним утром и вечером чувствуется запах озона, как после грозы.

Молнии же начали сверкать в атмосфере миллиарды лет назад, задолго до появления азотофиксирующих бактерий.
Так что они сыграли заметную роль в связывании атмосферного азота.
Например, только за последние два тысячелетия молнии перевели в удобрения 2 триллиона тонн азота - примерно 0,1% всего его количества в воздухе!

Проведите эксперимент. В дерево воткните гвоздь, а в землю медную проволоку на глубину 20 см., подсоедините вольтметр и Вы увидите, что стрелка вольтметра показывает 0,3 вольта.
Большие деревья генерируют до 0,5 вольт.
Корни деревьев как насосы с помощью осмоса поднимают из глубин земли воду и озонируют почву.

Немного истории.

Электрические явления играют важную роль в жизни растений. В ответ на внешние раздражения в них возникают очень слабые токи (биотоки). В связи с этим можно предположить, что внешнее электрическое поле может оказать заметное воздействие на темпы роста растительных организмов.

Еще в XIX веке ученые установили, что земной шар заряжен отрицательно по отношению к атмосфере. В начале XX столетия на расстоянии 100 Километров от поверхности земли была обнаружена положительно заряженная прослойка - ионосфера. В 1971 году космонавты увидели ее: она имеет вид светящейся прозрачной сферы. Таким образом, земная поверхность и ионосфера представляют собой два гигантских электрода, создающих электрическое поле, в котором постоянно находятся живые организмы.

Заряды между Землей и ионосферой переносятся аэроионами. Носители отрицательных зарядов устремляются к ионосфере, а положительные аэроионы движутся к земной поверхности, где вступают в контакт с растениями. Чем выше отрицательный заряд растения, тем больше оно поглощает положительных ионов

Можно предположить, что растения определенным образом реагируют на изменение электрического потенциала окружающей среды. Более двухсот лет назад французский аббат П Берталон заметил, что возле громоотвода растительность пышнее и сочнее, чем на некотором расстоянии от него. Позднее его соотечественник ученый Грандо выращивал два совершенно одинаковых растения, но одно находилось в естественных условиях, а другое было накрыто проволочной сеткой, ограждавшей его от внешнего электрического поля. Второе растение развивалось медленно и выглядело хуже находящегося в естественном электрическом поле. Грандо сделал заключение, что для нормального роста и развития растениям необходим постоянный контакт с внешним электрическим полем.

Однако до сих пор в действии электрического поля на растения много неясного. Давно замечено, что частые грозы благоприятствуют росту растений. Правда, это утверждение нуждается в тщательной детализации. Ведь грозовое лето отличается не только частотой молний, но и температурой, количеством осадков.

А это факторы, оказывающие на растения весьма сильное воздействие. Противоречивы данные, касающиеся темпов роста растений вблизи высоковольтных линий. Одни наблюдатели отмечают усиление роста под ними, другие - угнетение. Некоторые японские исследователи считают, что высоковольтные линии негативно влияют на экологическое равновесие. Более достоверным представляется тот факт, что у растений, произрастающих под высоковольтными линиями обнаруживаются различные аномалии роста. Так, под линией электропередач напряжением 500 киловольт у цветков гравилата увеличивается количество лепестков до 7-25 вместо привычных пяти. У девясила - растения из семейства сложноцветных - происходит срастание корзинок в крупное уродливое образование.

Не счесть опытов по влиянию электрического тока на растения. Еще И В. Мичурин проводил эксперименты, в которых гибридные сеянцы выращивались в больших ящиках с почвой, через которую пропускался постоянный электрический ток. Было установлено, что рост сеянцев при этом усиливается. В опытах, проведенных другими исследователями, были получены пестрые результаты. В некоторых случаях растения гибли, в других - давали небывалый урожай. Так, в одном из экспериментов вокруг делянки, где росла морковь, в почву вставили металлические электроды, через которые время от времени пропускали электрический ток. Урожай превзошел все ожидания - масса отдельных корней достигла пяти килограммов! Однако последующие опыты, к сожалению, дали иные результаты. По-видимому, исследователи упустили из виду какое-то условие, которое позволило в первом эксперименте с помощью электрического тока получить небывалый урожай.

Почему же растения лучше растут в электрическом поле? Ученые Института физиологии растений им. К. А. Тимирязева АН СССР установили, что фотосинтез идет тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500, 2500 вольт), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.

Создается впечатление, что электризация растений активизирует процесс фотосинтеза. Действительно, у огурцов, помещенных в электрическом поле, фотосинтез протекал в два раза быстрее по сравнению с контрольными. В результате этого у них образовалось в четыре раза больше завязей, которые быстрее, чем у контрольных растений, превратились в зрелые плоды. Когда растениям овса сообщили электрический потенциал, равный 90 вольт, масса их семян увеличилась в конце опыта на 44 процента по сравнению с контролем.

Пропуская через растения электрический ток, можно регулировать не только фотосинтез, но и корневое питание; ведь нужные растению элементы поступают, как правило, в виде ионов. Американские исследователи установили, что каждый элемент усваивается растением при определенной силе тока.

Английские биологи добились существенной стимуляции роста растений табака, пропуская через них постоянный электрический ток силой всего в одну миллионную долю ампера. Разница между контрольными и опытными растениями становилась очевидной уже через 10 дней после начала эксперимента, а спустя 22 дня она была очень заметной. Выяснилось, что стимуляция роста возможна только в том случае, если к растению подключался отрицательный электрод. При перемене полярности электрический ток, напротив, несколько тормозил рост растений.

В 1984 году в журнале "Цветоводство" была опубликована статья об использовании электрического тока для стимуляции корнеобразования у черенков декоративных растений, особенно укореняющихся с трудом, например у черенков роз. С ними-то и были поставлены опыты в закрытом грунте. Черенки нескольких сортов роз высаживали в перлитовый песок. Дважды в день их поливали и не менее трех часов воздействовали электрическим током (15 В; до 60 мкА). При этом отрицательный электрод подсоединялся к растению, а положительный погружали в субстрат. За 45 дней прижилось 89 процентов черенков, причем у них появились хорошо развитые корни. В контроле (без электростимуляции) за 70 дней выход укорененных черенков составил 75 процентов, однако корни у них были развиты значительно слабее. Таким образом, электростимуляция сократила срок выращивания черенков в 1,7 раза, в 1,2 раза увеличила выход продукции с единицы площади. Как видим, стимуляция роста под воздействием электрического тока наблюдается в том случае, если к растению присоединяется отрицательный электрод. Это можно объяснить тем, что само растение обычно заряжено отрицательно. Подключение отрицательного электрода увеличивает разность потенциала между ним и атмосферой, а это, как уже отмечалось, положительно сказывается на фотосинтезе.

Благоприятное действие электрического тока на физиологическое состояние растений использовали американские исследователи для лечения поврежденной коры деревьев, раковых образований и т. д. Весной внутрь дерева вводили электроды, через которые пропускали электрический ток. Продолжительность обработки зависела от конкретной ситуации. После такого воздействия кора обновлялась.

Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут и дружные всходы. В чем причина этого явления? Ученые предполагают, что внутри семян в результате воздействия электрическим полем разрывается часть химических связей, что приводит к возникновению осколков молекул, в том числе частиц с избыточной энергией - свободных радикалов. Чем больше активных частиц внутри семян, тем выше энергия их прорастания. По мнению ученых, подобные явления возникают при действии на семена и других излучений: рентгеновского, ультрафиолетового, ультразвукового, радиоактивного.

Возвратимся к результатам опыта Грандо. Растение, помещенное в металлическую клетку и тем самым изолированное от естественного электрического поля, плохо росло. Между тем в большинстве случаев собранные семена хранятся в железобетонных помещениях, которые, по существу, представляют собой точно такую же металлическую клетку. Не наносим ли мы тем самым ущерб семенам? И не потому ли хранившиеся таким образом семена столь активно реагируют на воздействие искусственного электрического поля?

Дальнейшее изучение влияния электрического тока на растения позволит еще более активно управлять их продуктивностью. Приведенные факты свидетельствуют о том, что в мире растений еще много непознанного.

ТЕЗИСЫ ИЗ РЕФЕРАТА ИЗОБРЕТЕНИЯ.

Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут и дружные всходы. В чем причина этого явления? Ученые предполагают, что внутри семян в результате воздействия электрическим полем разрывается часть химических связей, что приводит к возникновению осколков молекул, в том числе частиц с избыточной энергией - свободных радикалов. Чем больше активных частиц внутри семян, тем выше энергия их прорастания.

Понимая высокую эффективность использования электрической стимуляции растений в сельском и приусадебном хозяйстве, был разработан автономный, не требующий подзарядки долговременный источник низкопотенциального электричества для стимуляции роста растений.

Устройство для стимуляции роста растений является продуктом высоких технологий (не имеющий аналогов в мире) и представляет собой самовосстанавливающийся источник питания, преобразующее свободное электричество в электрический ток, образующееся в результате применения электроположительных и электроотрицательных материалов, разделенных проницаемой мембраной и помещенных в газовую среду, без применения электролитов в присутствии нано катализатора. В результате ионизации молекул газа осуществляется перенос низко потенциального заряда от одного материала к другому и возникает ЭДС.

Указанное низкопотенциальное электричество практически идентично электрическим процессам, происходящие под воздействием фотосинтеза в растениях и может использоваться для стимуляции их роста. Формула полезной модели представляет собой применение двух и более электроположительных и электроотрицательных материалов без ограничения их размеров и способов их соединения, разделенных любой проницаемой мембраной и помещенных в газовую среду с применением или без применения катализатора.

"ЭЛЕКТРОГРЯДКУ" Вы сможете сделать сами.


**

На трёхметровом шесте прикреплена алюминевая трубка заполненная (У-Ё...) составом.
От трубки по шесту в землю протянут провод
который является анодом (+ 0,8 вольт).

Установка устройства "ЭЛЕКТРОГРЯДКА" из алюминиевой трубки.

1 - Прикрепить устройство к трёх метровому шесту.
2 - Прикрепить три растяжки из алюминиевой проволоки м-2,5мм.
3 - Прикрепить к проводу устройства медную проволоку м-2,5мм.
4 - Вскопать землю, диаметр грядки может быть до шести метров.
5 - В центр грядки установить шест с устройством.
6 - Уложить медную проволоку по спирали с шагом 20см.
конец проволоки углубить на 30см.
7- Сверху медную проволоку засыпать землёй на 20см.
8 - По периметру грядки вбить в землю три колышка, а в них три гвоздя.
9 - К гвоздям прикрепить растяжки из алюминиевой проволоки.

Испытания ЭЛЕКТРОГРЯДКИ в парнике для ленивых 2015 год.


Установите электрогрядку в парнике, Вы на две недели раньше начнёте собирать урожай - овощей будет в два раза больше, чем в предыдущие года!



"ЭЛЕКТРОГРЯДКА" из медной трубки.

Вы можете сами изготовить устройство
"ЭЛЕКТРОГРЯДКА" в домашних условиях.

№ счёта: 4276380050142798

VLADIMIR POCHEEVSKY

Испытания "ЭЛЕКТРОГРЯДКИ" в холодное лето 2017 года.


Инструкция установки "ЭЛЕКТРОГРЯДКИ"



1 - Газовая трубка (генератор природных, импульсных токов земли).

2 - Штатив из медной проволоки - 30 см.

3 - Проволочная растяжка резонатор в виде пружины над землёй 5 метров.

4 - Проволочная растяжка резонатор в виде пружины в почве 3 метра.

Вытащите детали "Электрогрядки" из упаковки, растяните пружины по длине грядки.
Длинную пружину растяните на 5 метров, короткую на 3 метра.
Длину пружин можно увеличить обычной токопроводящей проволокой до бесконечности.

К штативу (2) присоедините пружину (4)- длиной 3 метра, как показано на рисунке,
штатив вставьте в почву и пружину углубите в землю на 5см.

К штативу (2) подсоедините газовую трубку (1). Трубку укрепите вертикально
с помощью колышка из ветки (железные штыри применять нельзя).

К газовой трубке (1) подсоедините пружину (3)- длиной 5 метров и укрепите на колышках из веток
с интервалом 2 метра. Пружина должна быть над землёй, высота не более 50 см.

После установки "Электрогрядки", к концам пружин подсоедините мультиметр
для проверки, показания должны быть не менее 300 мВ.

Устройство для стимуляции роста растений "ЭЛЕКТРОГРЯДКА" является продуктом высоких технологий (не имеющий аналогов в мире) и представляет собой самовосстанавливающийся источник питания, преобразующее свободное электричество в электрический ток, сокодвижение в растениях убыстряется, они менее подвергаются весенним заморозкам, быстрей растут и обильнее плодоносят!

Ваша материальная помощь идёт на поддержку
народной программы "ВОЗРОЖДЕНИЕ РОДНИКОВ РОССИИ"!

Если у Вас нет возможности оплатить технологию и материально помочь народной программе "ВОЗРОЖДЕНИЯ РОДНИКОВ РОССИИ" напишите нам на Email:[email protected] Мы рассмотрим Ваше письмо и вышлем Вам технологию даром!

Межрегиональная программа "ВОЗРОЖДЕНИЕ РОДНИКОВ РОССИИ" - является НАРОДНОЙ !
Мы трудимся только на частные пожертвования граждан и не принимаем финансирование от коммерческих государственных и политических организаций.

РУКОВОДИТЕЛЬ НАРОДНОЙ ПРОГРАММЫ

"ВОЗРОЖДЕНИЕ РОДНИКОВ РОССИИ"

Владимир Николаевич Почеевский Тел: 8-965-289-96-76


Все растения на земном шаре (а том числе и огородные), пройдя длительный путь развития в естественной природе и в культуре возделывания, достаточно хорошо приспособились использовать на рост и урожай внешние составляющие: свет, тепло, влагу, почвы. Среди атмосферных факторов, воздействующих на растения, сравнительно недавно открыто прямое и косвенное действие электричества.
В массе опытов, проведенных учеными с полевыми и овощными культурами (открытого грунта и теплиц), было выявлено резкое снижение (до 50%) урожаев растений, когда их изолировали от влияния электрического поля атмосферы металлическими сетками. Было также выявлено, что при положительном заряде атмосферы растения усиливают поглощение азота и фосфора, а при отрицательном - калия, кальция и магния. Этими факторами можно отчасти объяснить временную нехватку или избыток питания в растениях при его внесении в дни, не совпадающие с состоянием атмосферного электричества.
Кроме стимуляции или препятствия в минеральном питании растений, установлено электрическое влияние на интенсивность фотосинтетической деятельности через поглощение углекислого газа, на процессы обмена веществ в растении, а через это - на рост и развитие в целом.
Электрический ток (атмосферный или иной) действует на растения не прямо, а через происходящие в них сложные физиологические процессы ( , дыхание, поглощение элементов питания). Благодаря различиям в деятельности отдельных клеток, тканей, органов растений в них возникают биоэлектрические явления, или биопотенциалы, которые электричество способно усиливать или ослаблять.
Под влиянием биоэлектрических потенциалов образуется биоэлектрическая полярность растений в их осевом направлении. Ее используют для помощи растениям в особо неблагоприятных условиях: при засухе, низких температурах и освещенности. Воздействие на растения очень слабыми токами (несколько микроампер) помогает им справиться с разными стрессовыми ситуациями и улучшить свою жизнедеятельность.
Если к верхушке тепличного томата или огурца подключить ток с отрицательным полюсом, а к основанию - с положительным, то происходит значительная стимуляция роста, поглощения питательных элементов и большая прибавка в урожае. Растение в этом случае станет устойчивым к неблагоприятным факторам среды. Оказалось, что достигается это за счет лучшего поступления в растение микроэлементов (меди, марганца, железа и др.), что еще раз подтверждает важнейшее значение этих элементов для овощных культур.
Электричество помогает разделять семена разных овощей и сортов по признакам большей качественности, стимулирует рост и урожай при обработке поливной воды электромагнитом или разделения ее на "живую" и "мертвую". Электрический ток, преобразуемый в свет специального спектрального состава, позволяет получать в закрытых помещениях урожаи овощей, превосходящие в несколько раз высокие тепличные и в более короткие сроки.
Совсем недавно в естественных почвах открыты различные поля, в том числе и электрохимические, которые способны распространяться в разные стороны с разной скоростью. Их способность воздействовать положительно или отрицательно на растущие культуры (так называемая "напряженность полей") изменяется от внесения удобрений, извести и различных специальных веществ. Наверняка некоторые огородники отмечали на участках места, где из года в год ничего не растет или растет крайне плохо. Отчасти объяснить такое положение можно: ухудшение электрохимического поля.
Если огородникам решить эту проблему не под силу, учитывая дороговизну или сложность аппаратуры, то можно назвать и вполне доступные вещи для целей электростимуляции урожаев. Два десятка лет назад один подмосковный садовод использовал собственной конструкции передвижное устройство для одновременного полива растений электрозаряженной водой и воздействия слабым электротоком на корни через почву и листья растений.
Э. Феофилов, заслуженный агроном России

В течение нескольких последних лет многие компании, занимающиеся разработкой зеленых источников электроэнергии, ведут кропотливые исследования, направленные на поиски альтернативных методов ее получения. Так, голландская компания Plant-e добилась успеха в использовании для этой цели побочных продуктов фотосинтеза некоторых водолюбивых растений.

Принцип получения электроэнергии в чем-то схож с известным школьным экспериментом, когда вставленные в картофелину или в лимон электроды позволяют извлечь немного электричества, однако описываемая здесь технология имеет более сложное устройство.

Презентация новой технологии компании Plant-e прошла осенним вечером 2014 года в одном из парков Гамбурга. Проект носил название «Звездное небо» (Starry Sky), и суть его заключалась в том, что 300 обычных светодиодных светильников будут получать электричество от живых растений. Это и было продемонстрировано всем желающим наблюдателям, присутствующим в тот день на презентации.

Наряду с проектом «Звездное небо», компания Plant-e реализует системы питания точек доступа Wi-Fi, зарядные устройства для мобильных гаджетов, источники питания для подсветки транспортной инфраструктуры, дорожных знаков, и т.п., а также электрические модули для установки на крыши домов. Все это работает с применением энергии, получаемой от живых растений, причем без причинения этим растениям даже минимального вреда.

Учредители Plant-e уверены в революционности технологии, поскольку метод совершенно экологически безопасен, а главное - есть возможность использовать обширные площади болот и рисовых полей для производства электроэнергии в промышленных масштабах там, где имеет место ее дефицит, и речь здесь идет о целых странах.

В основе технологии - своеобразный аккумулятор, представляющий собой квадратный пластиковый контейнер со стороной 50 см. Контейнер разделен на две части ионоселективной мембраной, через которую происходит движение ионов водорода к катоду.

В одной части контейнера расположена аэробная катодная камера, а в другой части - анаэробная анодная камера. К аноду устремляются свободные электроны, которые по внешней цепи передаются на катод. В результате соединения водорода с кислородом в катодной камере образуется вода, и генерируется электрический ток.

Это становится возможным, поскольку при фотосинтезе солнечная энергия преобразуется через листья в органические вещества, которые затем выводятся растением через корни в окружающую их влажную почву.

Часть органических веществ расходуется самим растением для обеспечения его жизнедеятельности, а оставшаяся в воде почвы их часть перерабатывается микроорганизмами, в результате чего образуется много свободных электронов, вот они то и используются для производства электричества. Проще говоря, электроды, погруженные в эту влажную почву, захватывают электроны, и производят электрический ток.

По словам исполнительного директора компании Маржолейн Элдер, один квадратный метр площади сада, оборудованный таким образом, сможет произвести 28 кВт-ч электрической энергии в год, и это вполне пригодно для площадей, скажем в 100 квадратных метров и более, будь то садовый участок, или оборудованные аналогичным образом теплицы.

Следующим же шагом на данной стадии, станет использование компанией болот. По замыслу разработчиков, в топь, болото, рисовое поле, или дельту реки будут горизонтально погружены трубы, в которых будет происходить процесс аналогичный процессу в квадратных ячейках. Трубчатый прототип уже создан, и в течение ближайших трех-пяти лет будет выведен на рынок.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!